Gradle User Guide

Version 3.2.1

Copyright © 2007-2016 Hans Dockter, Adam Murdoch

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

|. ABOUT GRADLE

1. Introduction
2. Overview

1. WORKING WITH EXISTING BUILDS

3. Installing Gradle

4. Using the Gradle Command-Line

5. The Gradle Wrapper

6. The Gradle Daemon

7. Dependency Management Basics

8. Introduction to multi-project builds

9. Continuous build

10. Composite builds

11. Using the Gradle Graphical User Interface
12. The Build Environment

13. Troubleshooting

14. Embedding Gradle using the Tooling API

1. WRITING GRADLE BUILD SCRIPTS

15. Build Script Basics

16. Build Init Plugin

17. Writing Build Scripts

18. More about Tasks

19. Working With Files

20. Using Ant from Gradle
21. The Build Lifecycle

22. Wrapper Plugin

23. Logging

24. Dependency Management
25. Multi-project Builds

26. Gradle Plugins

27. Standard Gradle plugins
28. The Project Report Plugin
29. The Build Dashboard Plugin
30. Comparing Builds

31. Publishing artifacts

32. The Maven Plugin

33. The Signing Plugin

34. lvy Publishing (new)

35. Maven Publishing (new)
36. The Distribution Plugin
37. The Announce Plugin

38. The Build Announcements Plugin

V. EXTENDING THE BUILD

39. Writing Custom Task Classes

40. Writing Custom Plugins

41. The Java Gradle Plugin Development Plugin
42. Organizing Build Logic

43. Initialization Scripts

44, The Gradle TestKit

V. BUILDING JVM PROJECTS

45, Java Quickstart

46. The Java Plugin

47. Web Application Quickstart
48. The War Plugin

49. The Ear Plugin

50. The Jetty Plugin

51. The Application Plugin
52. The Java Library Distribution Plugin
53. Groovy Quickstart

54. The Groovy Plugin

55. The Scala Plugin

56. The ANTLR Plugin

57. The Checkstyle Plugin
58. The CodeNarc Plugin
59. The FindBugs Plugin
60. The JDepend Plugin
61. The PMD Plugin

62. The JaCoCo Plugin

63. The OSGi Plugin

64. The Eclipse Plugins
65. The IDEA Plugin

VI. THE SOFTWARE MODEL

66. Rule based model configuration

67. Software model concepts

68. Implementing model rulesin aplugin
69. Building Java Libraries

70. Building Play applications

71. Building native software

72. Extending the software model

VII. APPENDIX

A. Gradle Samples

B. Potentia Traps

C. The Feature Lifecycle
D. Gradle Command Line
E. Documentation licenses
Glossary

List of Examples

4.1. Executing multiple tasks

4.2. Excluding tasks

4.3. Abbreviated task name

4.4. Abbreviated camel case task name

4.5. Selecting the project using a build file
4.6. Selecting the project using project directory
4.7. Forcing tasksto run

4.8. Obtaining information about projects
4.9. Providing a description for a project
4.10. Obtaining information about tasks
4.11. Changing the content of the task report

4.12. Obtaining more information about tasks

4.13. Obtaining detailed help for tasks

4.14. Obtaining information about dependencies

4.15. Filtering dependency report by configuration
4.16. Getting the insight into a particular dependency
4.17. Information about properties

5.1. Running the Wrapper task

5.2. Wrapper task

5.3. Wrapper generated files

5.4. Specifying the HTTP Basic Authentication credentials using system properties
5.5. Specifying the HTTP Basic Authentication credentialsindi st ri but i onUr |
5.6. Generating a SHA-256 hash

5.7. Configuring SHA-256 checksum verification

7.1. Declaring dependencies

7.2. Definition of an external dependency

7.3. Shortcut definition of an external dependency

7.4. Usage of Maven central repository

7.5. Usage of JCenter repository

7.6. Usage of aremote Maven repository

7.7. Usage of aremote lvy directory

7.8. Usage of alocal lvy directory

7.9. Publishing to an Ivy repository

7.10. Publishing to a Maven repository

8.1. Listing the projectsin abuild

10.1. Dependencies of my-app

10.2. Declaring a command-line composite

10.3. Declaring a separate composite

10.4. Depending on task from included build

10.5. Build that does not declare group attribute

10.6. Declaring the substitutions for an included build
10.7. Depending on a single task from an included build
10.8. Depending on atasks with path in al included builds
11.1. Launching the GUI

12.1. Setting properties with a gradle.propertiesfile
12.2. Configuring an HTTP proxy

12.3. Configuring an HTTPS proxy

14.1. Using the tooling API

15.1. Your first build script

15.2. Execution of abuild script

15.3. A task definition shortcut

15.4. Using Groovy in Gradl€'s tasks

15.5. Using Groovy in Gradle's tasks

15.6. Declaration of task that depends on other task
15.7. Lazy dependsOn - the other task does not exist (yet)
15.8. Dynamic creation of atask

15.9. Accessing atask via API - adding a dependency
15.10. Accessing atask via APl - adding behaviour
15.11. Accessing task as a property of the build script

15.12. Adding extra propertiesto atask

15.13. Using AntBuilder to execute ant.loadfile target
15.14. Using methods to organize your build logic
15.15. Defining a default task

15.16. Different outcomes of build depending on chosen tasks
17.1. Accessing property of the Project object

17.2. Using local variables

17.3. Using extra properties

17.4. Configuring arbitrary objects

17.5. Configuring arbitrary objects using a script

17.6. Groovy JDK methods

17.7. Property accessors

17.8. Method call without parentheses

17.9. List and map literals

17.10. Closure as method parameter

17.11. Closure delegates

18.1. Defining tasks

18.2. Defining tasks - using strings for task names

18.3. Defining tasks with alternative syntax

18.4. Accessing tasks as properties

18.5. Accessing tasks viatasks collection

18.6. Accessing tasks by path

18.7. Creating a copy task

18.8. Configuring atask - various ways

18.9. Configuring atask - with closure

18.10. Defining a task with closure

18.11. Adding dependency on task from another project
18.12. Adding dependency using task object

18.13. Adding dependency using closure

18.14. Adding a'must run after' task ordering

18.15. Adding a 'should run after' task ordering

18.16. Task ordering does not imply task execution
18.17. A 'should run after' task ordering isignored if it introduces an ordering cycle
18.18. Adding a description to atask

18.19. Overwriting atask

18.20. Skipping atask using a predicate

18.21. Skipping tasks with StopExecutionException
18.22. Enabling and disabling tasks

18.23. Custom task class

18.24. Ad-hoc task

18.25. Using runtime API with custom task type

18.26. Using skipWhenEmpty() viathe runtime API
18.27. Inferred task dependency viatask outputs

18.28. Inferred task dependency via atask argument
18.29. Declaring a method to add task inputs

18.30. Declaring a method to add atask as an input
18.31. Failed attempt at setting up an inferred task dependency
18.32. Setting up an inferred task dependency between output dir and input files

18.33. Setting up an inferred task dependency with files()
18.34. Setting up an inferred task dependency with builtBy()
18.35. Ignoring up-to-date checks

18.36. Task rule

18.37. Dependency on rule based tasks

18.38. Adding atask finalizer

18.39. Task finalizer for afailing task

19.1. Locating files

19.2. Creating afile collection

19.3. Using afile collection

19.4. Implementing afile collection

19.5. Creating afile tree

19.6. Using afile tree

19.7. Using an archive as afile tree

19.8. Specifying a set of files

19.9. Copying files using the copy task

19.10. Specifying copy task source files and destination directory
19.11. Selecting the files to copy

19.12. Copying files using the copy() method without up-to-date check
19.13. Copying files using the copy() method with up-to-date check
19.14. Renaming files as they are copied

19.15. Filtering files as they are copied

19.16. Nested copy specs

19.17. Using the Sync task to copy dependencies

19.18. Creating a ZIP archive

19.19. Creation of ZIP archive

19.20. Configuration of archive task - custom archive name
19.21. Configuration of archive task - appendix & classifier
20.1. Using an Ant task

20.2. Passing nested text to an Ant task

20.3. Passing nested elements to an Ant task

20.4. Using an Ant type

20.5. Using a custom Ant task

20.6. Declaring the classpath for a custom Ant task

20.7. Using a custom Ant task and dependency management together
20.8. Importing an Ant build

20.9. Task that depends on Ant target

20.10. Adding behaviour to an Ant target

20.11. Ant target that depends on Gradle task

20.12. Renaming imported Ant targets

20.13. Setting an Ant property

20.14. Getting an Ant property

20.15. Setting an Ant reference

20.16. Getting an Ant reference

20.17. Fine tuning Ant logging

21.1. Single project build

21.2. Hierarchical layout

21.3. Flat layout

21.4. Madification of elements of the project tree
21.5. Adding of test task to each project which has certain property set
21.6. Notifications

21.7. Setting of certain property to all tasks

21.8. Logging of start and end of each task execution
23.1. Using stdout to write log messages

23.2. Writing your own log messages

23.3. Using SLF4Jto write log messages

23.4. Configuring standard output capture

23.5. Configuring standard output capture for atask
23.6. Customizing what Gradle logs

24.1. Definition of a configuration

24.2. Accessing a configuration

24.3. Configuration of a configuration

24.4. Module dependencies

24.5. Artifact only notation

24.6. Dependency with classifier

24.7. Iterating over a configuration

24.8. Client module dependencies - transitive dependencies
24.9. Project dependencies

24.10. File dependencies

24.11. Generated file dependencies

24.12. Gradle API dependencies

24.13. Gradle's Groovy dependencies

24.14. Excluding transitive dependencies

24.15. Optional attributes of dependencies

24.16. Collections and arrays of dependencies

24.17. Dependency configurations

24.18. Dependency configurations for project

24.19. Configuration.copy

24.20. Accessing declared dependencies

24.21. Configuration.files

24.22. Configuration.files with spec

24.23. Configuration.copy

24.24. Configuration.copy vs. Configuration.files
24.25. Adding central Maven repository

24.26. Adding Bintray's JCenter Maven repository
24.27. Using Bintrays's JCenter with HTTP

24.28. Adding the local Maven cache as arepository
24.29. Adding custom Maven repository

24.30. Adding additional Maven repositories for JAR files
24.31. Accessing password protected Maven repository
24.32. Flat repository resolver

24.33. lvy repository

24.34. lvy repository with named layout

24.35. lvy repository with pattern layout

24.36. lvy repository with multiple custom patterns
24.37. lvy repository with Maven compatible layout

24.38. lvy repository

24.39. Declaring aMaven and vy repository

24.40. Providing credentialsto a Maven and I vy repository
24.41. Declaring a S3 backed Maven and lvy repository
24.42. Configure repository to use only digest authentication
24.43. Configure repository to use preemptive authentication
24.44. Accessing arepository

24.45. Configuration of a repository

24.46. Definition of a custom repository

24.47. Forcing consistent version for agroup of libraries
24.48. Using a custom versioning scheme

24.49. Blacklisting a version with a replacement

24.50. Changing dependency group and/or name at the resolution
24.51. Substituting a module with a project

24.52. Substituting a project with amodule

24.53. Conditionally substituting a dependency

24.54. Specifying default dependencies on a configuration
24.55. Enabling dynamic resolve mode

24.56. 'Latest' version selector

24.57. Custom status scheme

24.58. Custom status scheme by module

24.59. |vy component metadata rule

24.60. Rule source component metadatarule

24.61. Component selection rule

24.62. Component selection rule with modul e target

24.63. Component selection rule with metadata

24.64. Component selection rule using a rule source object
24.65. Declaring modul e replacement

24.66. Dynamic version cache control

24.67. Changing module cache control

25.1. Multi-project tree - water & bluewhale projects

25.2. Build script of water (parent) project

25.3. Multi-project tree - water, bluewhale & krill projects
25.4. Water project build script

25.5. Defining common behavior of all projects and subprojects
25.6. Defining specific behaviour for particular project

25.7. Defining specific behaviour for project krill

25.8. Adding custom behaviour to some projects (filtered by project name)
25.9. Adding custom behaviour to some projects (filtered by project properties)
25.10. Running build from subproject

25.11. Evaluation and execution of projects

25.12. Evaluation and execution of projects

25.13. Running tasks by their absolute path

25.14. Dependencies and execution order

25.15. Dependencies and execution order

25.16. Dependencies and execution order

25.17. Declaring dependencies

25.18. Declaring dependencies

25.19. Cross project task dependencies

25.20. Configuration time dependencies

25.21. Configuration time dependencies - evaluationDependsOn
25.22. Configuration time dependencies

25.23. Dependencies - real life example - crossproject configuration
25.24. Project lib dependencies

25.25. Project lib dependencies

25.26. Fine grained control over dependencies
25.27. Build and Test Single Project

25.28. Partial Build and Test Single Project

25.29. Build and Test Depended On Projects
25.30. Build and Test Dependent Projects

26.1. Applying a script plugin

26.2. Applying a core plugin

26.3. Applying acommunity plugin

26.4. Applying plugins only on certain subprojects.
26.5. Using plugins from custom plugin repositories.
26.6. Complete Plugin Publishing Sample

26.7. Applying abinary plugin

26.8. Applying a binary plugin by type

26.9. Applying a plugin with the buildscript block
29.1. Using the Build Dashboard plugin

31.1. Defining an artifact using an archive task
31.2. Defining an artifact using afile

31.3. Customizing an artifact

31.4. Map syntax for defining an artifact using afile
31.5. Configuration of the upload task

32.1. Using the Maven plugin

32.2. Creating a stand alone pom.

32.3. Upload of file to remote Maven repository
32.4. Upload of filevia SSH

32.5. Customization of pom

32.6. Builder style customization of pom

32.7. Modifying auto-generated content

32.8. Customization of Maven installer

32.9. Generation of multiple poms

32.10. Accessing a mapping configuration

33.1. Using the Signing plugin

33.2. Signing a configuration

33.3. Signing a configuration output

33.4. Signing atask

33.5. Signing atask output

33.6. Conditional signing

33.7. Signing a POM for deployment

34.1. Applying the “ivy-publish” plugin

34.2. Publishing a Java module to vy

34.3. Publishing additional artifact to vy

34.4. customizing the publication identity

34.5. Customizing the module descriptor file

34.6. Publishing multiple modules from a single project

34.7. Declaring repositories to publish to

34.8. Choosing a particular publication to publish

34.9. Publishing all publications viathe “publish” lifecycle task
34.10. Generating the vy module descriptor file

34.11. Publishing a Java module

34.12. Example generated ivy.xml

35.1. Applying the 'maven-publish’ plugin

35.2. Adding a MavenPublication for a Java component

35.3. Adding additional artifact to a MavenPublication

35.4. customizing the publication identity

35.5. Modifying the POM file

35.6. Publishing multiple modules from a single project

35.7. Declaring repositories to publish to

35.8. Publishing a project to a Maven repository

35.9. Publish a project to the Maven local repository

35.10. Generate a POM file without publishing

36.1. Using the distribution plugin

36.2. Adding extra distributions

36.3. Configuring the main distribution

36.4. publish main distribution

37.1. Using the announce plugin

37.2. Configure the announce plugin

37.3. Using the announce plugin

38.1. Using the build announcements plugin

38.2. Using the build announcements plugin from an init script
39.1. Defining a custom task

39.2. A hello world task

39.3. A customizable hello world task

39.4. A build for a custom task

39.5. A custom task

39.6. Using a custom task in another project

39.7. Testing a custom task

39.8. Defining an incremental task action

39.9. Running the incremental task for the first time

39.10. Running the incremental task with unchanged inputs
39.11. Running the incremental task with updated input files
39.12. Running the incremental task with an input file removed
39.13. Running the incremental task with an output file removed
39.14. Running the incremental task with an input property changed
40.1. A custom plugin

40.2. A custom plugin extension

40.3. A custom plugin with configuration closure

40.4. Evauating file properties lazily

40.5. A build for acustom plugin

40.6. Wiring for a custom plugin

40.7. Using a custom plugin in another project

40.8. Applying acommunity plugin with the plugins DSL

40.9. Testing a custom plugin

40.10. Using the Java Gradle Plugin Development plugin
40.11. Managing domain objects

41.1. Using the Java Gradle Plugin Development plugin

41.2. Using the gradlePlugin {} block.

42.1. Using inherited properties and methods

42.2. Using injected properties and methods

42.3. Configuring the project using an external build script
42.4. Custom buildSrc build script

42.5. Adding subprojects to the root buildSrc project

42.6. Running another build from a build

42.7. Declaring external dependencies for the build script

42.8. A build script with external dependencies

42.9. Ant optional dependencies

43.1. Using init script to perform extra configuration before projects are evaluated
43.2. Declaring external dependencies for an init script

43.3. Aninit script with external dependencies

43.4. Using pluginsin init scripts

44.1. Declaring the TestKit dependency

44.2. Declaring the JUnit dependency

44.3. Using GradleRunner with JUnit

44 4. Using GradleRunner with Spock

44.5. Making the code under test classpath available to the tests
44.6. Injecting the code under test classes into test builds

44.7. Using the Java Gradle Development plugin for generating the plugin metadata
44.8. Automatically injecting the code under test classesinto test builds
44.9. Reconfiguring the classpath generation conventions of the Java Gradle Development plugin
44.10. Specifying a Gradle version for test execution

45.1. Using the Java plugin

45.2. Building a Java project

45.3. Adding Maven repository

45.4. Adding dependencies

45.5. Customization of MANIFEST.MF

45.6. Adding atest system property

45.7. Publishing the JAR file

45.8. Eclipse plugin

45.9. Java example - complete build file

45.10. Multi-project build - hierarchical layout

45.11. Multi-project build - settings.gradlefile

45.12. Multi-project build - common configuration

45.13. Multi-project build - dependencies between projects
45.14. Multi-project build - distribution file

46.1. Using the Java plugin

46.2. Custom Java source layout

46.3. Accessing a source set

46.4. Configuring the source directories of a source set

46.5. Defining a source set

46.6. Defining source set dependencies

46.7. Compiling a source set

46.8. Assembling a JAR for a source set

46.9. Generating the Javadoc for a source set

46.10. Running tests in a source set

46.11. Filtering tests in the build script

46.12. JUnit Categories

46.13. Grouping TestNG tests

46.14. Preserving order of TestNG tests

46.15. Grouping TestNG tests by instances

46.16. Creating a unit test report for subprojects

46.17. Customization of MANIFEST.MF

46.18. Creating a manifest object.

46.19. Separate MANIFEST.MF for a particular archive
46.20. Configure Java 6 build

47.1. War plugin

47.2. Running web application with Jetty plugin

48.1. Using the War plugin

48.2. Customization of war plugin

49.1. Using the Ear plugin

49.2. Customization of ear plugin

50.1. Using the Jetty plugin

51.1. Using the application plugin

51.2. Configure the application main class

51.3. Configure default VM settings

51.4. Include output from other tasks in the application distribution
51.5. Automatically creating files for distribution

52.1. Using the Javalibrary distribution plugin

52.2. Configure the distribution name

52.3. Include filesin the distribution

53.1. Groovy plugin

53.2. Dependency on Groovy

53.3. Groovy example - complete build file

54.1. Using the Groovy plugin

54.2. Custom Groovy source layout

54.3. Configuration of Groovy dependency

54.4. Configuration of Groovy test dependency

54.5. Configuration of bundled Groovy dependency
54.6. Configuration of Groovy file dependency

54.7. Configure Java 6 build for Groovy

55.1. Using the Scala plugin

55.2. Custom Scala source layout

55.3. Declaring a Scala dependency for production code
55.4. Declaring a Scala dependency for test code

55.5. Declaring aversion of the Zinc compiler to use
55.6. Forcing a scala-library dependency for all configurations
55.7. Forcing a scala-library dependency for the zinc configuration
55.8. Adjusting memory settings

55.9. Forcing all code to be compiled

55.10. Configure Java 6 build for Scala

55.11. Explicitly specify atarget IntelliJ IDEA version
56.1. Using the ANTLR plugin

56.2. Declare ANTLR version

56.3. setting custom max heap size and extra arguments for ANTLR
57.1. Using the Checkstyle plugin

57.2. Customizing the HTML report

58.1. Using the CodeNarc plugin

59.1. Using the FindBugs plugin

59.2. Customizing the HTML report

60.1. Using the JDepend plugin

61.1. Using the PMD plugin

62.1. Applying the JaCoCo plugin

62.2. Configuring JaCoCo plugin settings

62.3. Configuring test task

62.4. Configuring test task

62.5. Using application plugin to generate code coverage data
62.6. Coverage reports generated by applicationCodeCoverageReport
63.1. Using the OSGi plugin

63.2. Configuration of OSGi MANIFEST.MF file
64.1. Using the Eclipse plugin

64.2. Using the Eclipse WTP plugin

64.3. Partial Overwrite for Classpath

64.4. Partial Overwrite for Project

64.5. Export Dependencies

64.6. Customizing the XML

65.1. Using the IDEA plugin

65.2. Partial Rewrite for Module

65.3. Partial Rewrite for Project

65.4. Export Dependencies

65.5. Customizing the XML

66.1. applying arule source plugin

66.2. amodel creation rule

66.3. amodel mutation rule

66.4. creating atask

66.5. a managed type

66.6. a String property

66.7. aFile property

66.8. a Long property

66.9. a boolean property

66.10. an int property

66.11. a managed property

66.12. an enumeration type property

66.13. amanaged set

66.14. strongly modelling sources sets

66.15. aDSL example applying arule to every element in a scope
66.16. DSL configuration rule

66.17. Configuration run when required

66.18. Configuration not run when not required

66.19. DSL creation rule

66.20. DSL creation rule without initiaization

66.21. Initialization before configuration

66.22. Nested DSL creation rule

66.23. Nested DSL configuration rule

66.24. DSL configuration rule for each element in amap
66.25. Nested DSL property configuration

66.26. a DSL example showing type conversions

66.27. aDSL rule using inputs

66.28. model task output

69.1. Using the Java software plugins

69.2. Creating ajavalibrary

69.3. Configuring a source set

69.4. Creating a new source set

69.5. The components report

69.6. Declaring a dependency onto alibrary

69.7. Declaring a dependency onto a project with an explicit library
69.8. Declaring a dependency onto a project with an implicit library
69.9. Declaring a dependency onto alibrary published to a Maven repository
69.10. Declaring a module dependency using shorthand notation
69.11. Configuring repositories for dependency resolution
69.12. Specifying api packages

69.13. Specifying api dependencies

69.14. Main sources

69.15. Client component

69.16. Broken client component

69.17. Recompiling the client

69.18. Declaring target platforms

69.19. Declaring binary specific sources

69.20. Declaring target platforms

69.21. Using the JUnit plugin

69.22. Executing the test suite

69.23. Executing the test suite

69.24. Declaring a component under test

69.25. Declaring local Javainstallations

70.1. Using the Play plugin

70.2. The components report

70.3. Selecting a version of the Play Framework

70.4. Adding dependencies to a Play application

70.5. Adding extra source setsto a Play application

70.6. Configuring Scala compiler options

70.7. Configuring routes style

70.8. Configuring a custom asset pipeline

70.9. Configuring dependencies on Play subprojects
70.10. Add extrafilesto a Play application distribution
70.11. Applying both the Play and IDEA plugins

71.1. Defining alibrary component

71.2. Defining executable components

71.3. Sample build

71.4. Dependent components report

71.5. Dependent components report

71.6. Report of components that depends on the operators component

71.7. Report of components that depends on the operators component, including test suites
71.8. Assemble components that depends on the passing/static binary of the operators component
71.9. Build components that depends on the passing/static binary of the operators component
71.10. Adding a custom check task

71.11. Running checks for a given binary

71.12. The components report

71.13. The 'cpp' plugin

71.14. C++ source set

71.15. The'c' plugin

71.16. C source set

71.17. The 'assembler’ plugin

71.18. The 'objective-c' plugin

71.19. The 'objective-cpp’ plugin

71.20. Settings that apply to all binaries

71.21. Settings that apply to all shared libraries

71.22. Settings that apply to all binaries produced for the 'main’ executable component
71.23. Settings that apply only to shared libraries produced for the 'main’ library component
71.24. The 'windows-resources plugin

71.25. Configuring the location of Windows resource sources

71.26. Building aresource-only dll

71.27. Providing alibrary dependency to the source set

71.28. Providing alibrary dependency to the binary

71.29. Declaring project dependencies

71.30. Creating a precompiled header file

71.31. Including a precompiled header file in a source file

71.32. Configuring a precompiled header

71.33. Defining build types

71.34. Configuring debug binaries

71.35. Defining platforms

71.36. Defining flavors

71.37. Targeting a component at particular platforms

71.38. Building all possible variants

71.39. Defining tool chains

71.40. Reconfigure tool arguments

71.41. Defining target platforms

71.42. Registering CUnit tests

71.43. Running CUnit tests

71.44. Registering GoogleTest tests

72.1. an example of using a custom software model

72.2. Declare a custom component

72.3. Register a custom component

72.4. Declare a custom binary

72.5. Register a custom binary

72.6. Declare a custom source set

72.7. Register a custom source set

72.8. Generates documentation binaries

72.9. Generates tasks for text source sets

72.10. Register a custom source set

72.11. an example of using a custom software model
72.12. foo bar

72.13. public type and internal view declaration
72.14. type registration

72.15. public and internal data mutation

72.16. example build script and model report output
B.1. Variables scope: local and script wide

B.2. Distinct configuration and execution phase

Part |. About Gradle

1

| ntroduction

We would like to introduce Gradle to you, a build system that we think is a quantum leap for build
technology in the Java (VM) world. Gradle provides:

* A very flexible general purpose build tool like Ant.

® Switchable, build-by-convention frameworks ala Maven. But we never lock you in!

* Very powerful support for multi-project builds.

* Very powerful dependency management (based on Apache Ivy).

® Full support for your existing Maven or Ivy repository infrastructure.

® Support for transitive dependency management without the need for remote repositories or pom xim
andi vy. xm files.

® Ant tasks and builds asfirst class citizens.

® Groovy build scripts.

A rich domain model for describing your build.

In Chapter 2, Overview you will find a detailed overview of Gradle. Otherwise, the tutorials are waiting,
have fun:)

1.1. About this user guide

This user guide, like Gradle itself, is under very active development. Some parts of Gradle aren't
documented as completely as they need to be. Some of the content presented won't be entirely clear or will
assume that you know more about Gradle than you do. We need your help to improve this user guide. You
can find out more about contributing to the documentation at the Gradle web site.

Throughout the user guide, you will find some diagrams that represent dependency relationships between
Gradle tasks. These use something analogous to the UML dependency notation, which renders an arrow
from one task to the task that the first task depends on.

Page 18 of 605

http://www.gradle.org/contribute

Overview

2.1. Features

Hereisalist of some of Gradle's features.

Declarative builds and build-by-convention
At the heart of Gradle lies arich extensible Domain Specific Language (DSL) based on Groovy. Gradle
pushes declarative builds to the next level by providing declarative language elements that you can
assemble as you like. Those elements also provide build-by-convention support for Java, Groovy, OSGi,
Web and Scala projects. Even more, this declarative language is extensible. Add your own new language
elements or enhance the existing ones, thus providing concise, maintainable and comprehensible builds.

Language for dependency based programming
The declarative language lies on top of a general purpose task graph, which you can fully leverage in
your builds. It provides utmost flexibility to adapt Gradle to your unique needs.

Structureyour build
The suppleness and richness of Gradle finally allows you to apply common design principles to your
build. For example, it is very easy to compose your build from reusable pieces of build logic. Inline stuff
where unnecessary indirections would be inappropriate. Don't be forced to tear apart what belongs
together (e.g. in your project hierarchy). Avoid smells like shotgun changes or divergent change that turn
your build into a maintenance nightmare. At last you can create a well structured, easily maintained,
comprehensible build.

Deep API
From being a pleasure to be used embedded to its many hooks over the whole lifecycle of build
execution, Gradle alows you to monitor and customize its configuration and execution behavior to its
very core.

Gradle scales
Gradle scales very well. It significantly increases your productivity, from simple single project builds up
to huge enterprise multi-project builds. This is true for structuring the build. With the state-of-art
incremental build function, this is also true for tackling the performance pain many large enterprise
builds suffer from.

Multi-project builds
Gradl€e's support for multi-project build is outstanding. Project dependencies are first class citizens. We
alow you to model the project relationships in a multi-project build as they really are for your problem
domain. Gradle follows your layout not vice versa.

Page 19 of 605

Gradle provides partia builds. If you build a single subproject Gradle takes care of building all the
subprojects that subproject depends on. Y ou can also choose to rebuild the subprojects that depend on a
particular subproject. Together with incremental builds thisis a big time saver for larger builds.

Many ways to manage your dependencies
Different teams prefer different ways to manage their external dependencies. Gradle provides convenient
support for any strategy. From transitive dependency management with remote Maven and lvy
repositories to jars or directories on the local file system.

Gradleisthefirst build integration tool
Ant tasks are first class citizens. Even more interesting, Ant projects are first class citizens as well.
Gradle provides a deep import for any Ant project, turning Ant targets into native Gradle tasks at
runtime. You can depend on them from Gradle, you can enhance them from Gradle, you can even
declare dependencies on Gradle tasks in your build.xml. The same integration is provided for properties,
paths, etc ...

Gradle fully supports your existing Maven or Ivy repository infrastructure for publishing and retrieving
dependencies. Gradle also provides a converter for turning a Maven pom xmi into a Gradle script.
Runtime imports of Maven projects will come soon.

Ease of migration
Gradle can adapt to any structure you have. Therefore you can always develop your Gradle build in the
same branch where your production build lives and both can evolve in parallel. We usually recommend
to write tests that make sure that the produced artifacts are similar. That way migration is as less
disruptive and as reliable as possible. This is following the best-practices for refactoring by applying
baby steps.

Groovy

Gradl€e's build scripts are written in Groovy, not XML. But unlike other approaches thisis not for simply
exposing the raw scripting power of a dynamic language. That would just lead to a very difficult to
maintain build. The whole design of Gradle is oriented towards being used as a language, not as arigid
framework. And Groovy is our glue that allows you to tell your individual story with the abstractions
Gradle (or you) provide. Gradle provides some standard stories but they are not privileged in any form.
This is for us a major distinguishing feature compared to other declarative build systems. Our Groovy
support is not just sugar coating. The whole Gradle API is fully Groovy-ized. Adding Groovy resultsin
an enjoyable and productive experience.

The Gradle wrapper
The Gradle Wrapper allows you to execute Gradle builds on machines where Gradle is not installed.
Thisis useful for example for some continuous integration servers. It is also useful for an open source
project to keep the barrier low for building it. The wrapper is also very interesting for the enterprise. It is
a zero administration approach for the client machines. It also enforces the usage of a particular Gradle
version thus minimizing support issues.

Free and open source
Gradleis an open source project, and is licensed under the ASL.

Page 20 of 605

http://www.gradle.org/license

2.2. Why Groovy?

We think the advantages of an internal DSL (based on a dynamic language) over XML are tremendous when
used in build scripts. There are a couple of dynamic languages out there. Why Groovy? The answer liesin
the context Gradle is operating in. Although Gradle is a general purpose build tool at its core, its main focus
are Java projects. In such projects the team members will be very familiar with Java. We think a build
should be as transparent as possible to all team members.

In that case, you might argue why we don't just use Java as the language for build scripts. We think thisis a
valid question. It would have the highest transparency for your team and the lowest learning curve, but
because of the limitations of Java, such a build language would not be as nice, expressive and powerful asiit
could be. [1] Languages like Python, Groovy or Ruby do a much better job here. We have chosen Groovy as
it offers by far the greatest transparency for Java people. Its base syntax is the same as Java's as well as its
type system, its package structure and other things. Groovy provides much more on top of that, but with the
common foundation of Java.

For Java developers with Python or Ruby knowledge or the desire to |earn them, the above arguments don't
apply. The Gradle design is well-suited for creating another build script engine in JRuby or Jython. It just
doesn't have the highest priority for us at the moment. We happily support any community effort to create
additional build script engines.

[1] At http://www.defmacro.org/ramblings/lisp.html you find an interesting article comparing Ant, XML,
Javaand Lisp. It's funny that the 'if Java had that syntax’ syntax in this article is actually the Groovy syntax.

Page 21 of 605

http://www.defmacro.org/ramblings/lisp.html

Part I1. Working with
existing builds

3

Installing Gradle

3.1. Prerequisites

Gradle requires a Java JDK or JRE to be installed, version 7 or higher (to check, use j ava -ver si on).
Gradle ships with its own Groovy library, therefore Groovy does not need to be installed. Any existing
Groovy instalation isignored by Gradle.

Gradle uses whatever JDK it finds in your path. Alternatively, you can set the JAVA HOVE environment
variable to point to the installation directory of the desired JDK.

3.2. Download

Y ou can download one of the Gradle distributions from the Gradle web site.

3.3. Unpacking

The Gradle distribution comes packaged as a ZIP. The full distribution contains:

® The Gradle binaries.

® Theuser guide (HTML and PDF).

®* TheDSL reference guide.

®* The APl documentation (Javadoc).

® Extensive samples, including the examples referenced in the user guide, along with some complete and
more complex builds you can use as a starting point for your own build.

® The binary sources. This is for reference only. If you want to build Gradle you need to download the
source distribution or checkout the sources from the source repository. See the Gradle web site for
details.

3.4. Environment variables

For running Gradle, firstly add the environment variable GRADLE _HOME. This should point to the unpacked
files from the Gradle website. Next add GRADLE_HQOVE/ bi n to your PATH environment variable. Usualy,
thisis sufficient to run Gradle.

Page 23 of 605

http://www.gradle.org/downloads
http://www.gradle.org/development

3.5. Running and testing your installation

You run Gradle via the gradle command. To check if Gradle is properly installed just type gradle -v. The
output shows the Gradle version and also the local environment configuration (Groovy, VM version, OS,
etc.). The displayed Gradle version should match the distribution you have downloaded.

3.6. VM options

JVM options for running Gradle can be set via environment variables. You can use either GRADLE_OPTS
or JAVA_OPTS, or both. JAVA_OPTS is by convention an environment variable shared by many Java
applications. A typical use case would be to set the HTTP proxy in JAVA OPTS and the memory optionsin
GRADLE_OPTS. Those variables can also be set at the beginning of the gradle or gradlew script.

Note that it's not currently possible to set VM options for Gradle on the command line.

Page 24 of 605

A

Using the Gradle Command-Line

This chapter introduces the basics of the Gradle command-line. Y ou run a build using the gradle command,
which you have aready seen in action in previous chapters.

4.1. Executing multiple tasks

You can execute multiple tasks in a single build by listing each of the tasks on the command-line. For
example, the command gr adl e conpil e test will execute the conpi | e and t est tasks. Gradle
will execute the tasks in the order that they are listed on the command-line, and will also execute the
dependencies for each task. Each task is executed once only, regardless of how it came to be included in the
build: whether it was specified on the command-line, or as a dependency of another task, or both. Let's look
at an example.

Below four tasks are defined. Both di st andt est depend onthe conpi | e task. Running gr adl e di st te:
for this build script resultsin the conpi | e task being executed only once.

Figure4.1. Task dependencies

compile compileTest ek
test

Page 25 of 605

Example 4.1. Executing multiple tasks
buil d. gradl e

task conpile {
doLast {
println 'conpiling source
}
}

task conpi |l eTest (dependsOn: conpile) {
doLast {
println 'conpiling unit tests'
}
}

task test(dependsOn: [conpile, conpileTest]) {
doLast {
println 'running unit tests'

}
}

task di st (dependsOn: [conpile, test]) {
doLast {
println 'building the distribution'

}

Output of gr adl e di st test

> gradle dist test

:conpile

conpi | i ng source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

bui |l ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Each task is executed only once, sogr adl e test test isexactlythesameasgradl e test.

4.2. Excluding tasks

Y ou can exclude atask from being executed using the - x command-line option and providing the name of
the task to exclude. Let'stry this with the sample build file above.

Page 26 of 605

Example 4.2. Excluding tasks
Output of gradl e di st -x test

> gradle dist -x test

:conpile
conpi ling source
1 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

You can see from the output of this example, that the t est task is not executed, even though it is a
dependency of thedi st task. You will also noticethat thet est task's dependencies, such asconpi | eTest
are not executed either. Those dependencies of t est that are required by another task, such as conpi | e,
are still executed.

4.3. Continuing the build when afailure occurs

By default, Gradle will abort execution and fail the build as soon as any task fails. This allows the build to
complete sooner, but hides other failures that would have occurred. In order to discover as many failures as
possiblein asingle build execution, you can usethe - - cont i nue option.

When executed with - - cont i nue, Gradle will execute every task to be executed where al of the
dependencies for that task completed without failure, instead of stopping as soon as the first failure is
encountered. Each of the encountered failures will be reported at the end of the build.

If atask fails, any subseguent tasks that were depending on it will not be executed, asit is not safe to do so.
For example, tests will not run if there is a compilation failure in the code under test; because the test task
will depend on the compilation task (either directly or indirectly).

4.4. Task name abbreviation

When you specify tasks on the command-line, you don't have to provide the full name of the task. Y ou only
need to provide enough of the task name to uniquely identify the task. For example, in the sample build
above, you can execute task di st by running gr adl e d:

Page 27 of 605

Example 4.3. Abbreviated task name

Output of gr adl e di

> gradl e di

:conpile

conpi ling source
:conpi | eTest
conpiling unit tests
‘test

running unit tests

1 di st

buil ding the distribution
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also abbreviate each word in a camel case task name. For example, you can execute task conpi | eTest
by running gr adl e conpTest orevengradle cT

Example 4.4. Abbreviated camel case task name
Output of gradl e cT

> gradle cT

:conpile
conpi l i ng source
:conpi | eTest

conpiling unit tests
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can also use these abbreviations with the - x command-line option.

4.5. Selecting which build to execute

When you run the gradle command, it looks for a build file in the current directory. You can use the - b
option to select another build file. If you use - b option then setti ngs. gradl e file is not used.
Example:

Page 28 of 605

Example 4.5. Selecting the project using a build file
subdi r/ myproj ect. gradl e

task hello {
doLast {
println "using build file '$buildFile.name' in '$buildFile.parentFile.nd

}

Output of gradl e -q -b subdir/nyproject.gradle hello

> gradle -q -b subdir/myproject.gradle hello
using build file "myproject.gradle' in 'subdir'.

Alternatively, you can use the - p option to specify the project directory to use. For multi-project builds you
should use - p option instead of - b option.

Example 4.6. Selecting the project using project directory

Outputof gradl e -gq -p subdir hello

> gradle -q -p subdir hello
using build file "build.gradle' in '"subdir'.

4.6. Forcing tasks to execute

Many tasks, particularly those provided by Gradle itself, support incremental builds. Such tasks can
determine whether they need to run or not based on whether their inputs or outputs have changed since the
last time they ran. You can easily identify tasks that take part in incremental build when Gradle displays the
text UP- TO- DATE next to their name during a build run.

You may on occasion want to force Gradle to run all the tasks, ignoring any up-to-date checks. If that's the
case, smply usethe - - r er un-t asks option. Here's the output when running atask both without and with
--rerun-tasks:

Example 4.7. Forcing taskstorun

Output of gr adl e dol t

> gradle dolt
:dolt UP- TO DATE

Output of gr adl e --rerun-tasks dolt

> gradle --rerun-tasks dolt
;dolt

Note that thiswill force all required tasks to execute, not just the ones you specify on the command line. It's
alittle like running acl ean, but without the build's generated output being del eted.

Page 29 of 605

4.7. Obtaining information about your build

Gradle provides several built-in tasks which show particular details of your build. This can be useful for
understanding the structure and dependencies of your build, and for debugging problems.

In addition to the built-in tasks shown below, you can also use the project report plugin to add tasks to your
project which will generate these reports.

4.7.1. Listing projects

Running gr adl e proj ects gives you alist of the sub-projects of the selected project, displayed in a
hierarchy. Here is an example:

Example 4.8. Obtaining information about projects

Output of gradl e -q projects

> gradle -q projects

Root project 'projectReports
+--- Project ':api' - The shared APl for the application
\--- Project ':webapp' - The Wb application inplenentation

To see a list of the tasks of a project, run gradle <project-path>:tasks
For exanple, try running gradle :api:tasks

The report shows the description of each project, if specified. Y ou can provide a description for a project by
setting thedescr i pt i on property:

Example 4.9. Providing a description for a project

buil d. gradl e

description = ' The shared APl for the application'

4.7.2. Listing tasks

Running gr adl e tasks givesyou alist of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task. Below is an example of this report:

Page 30 of 605

Example 4.10. Obtaining information about tasks
Output of gr adl e -qg tasks

> gradle -q tasks

Al'l tasks runnable fromroot project

Default tasks: dists

Bui |l d tasks

clean - Deletes the build directory (build)
dists - Builds the distribution

libs - Builds the JAR

Bui |l d Setup tasks

init - Initializes a new Gradle build. [incubating]
wrapper - Cenerates Gradle wapper files. [incubating]

Hel p tasks

bui | dEnvi ronment - Displays all buildscript dependencies declared in root project 'p
conponents - Displays the conponents produced by root project 'projectReports'. [inc
dependenci es - Displays all dependencies declared in root project 'projectReports'.

dependencyl nsight - Displays the insight into a specific dependency in root project

dependent Conponents - Displays the dependent conponents of conmponents in root projec
help - Displays a hel p nessage.

nodel - Displays the configuration nodel of root project 'projectReports'. [incubati
projects - Displays the sub-projects of root project 'projectReports'.

properties - Displays the properties of root project 'projectReports'.

tasks - Displays the tasks runnable fromroot project 'projectReports’ (sone of the

To see all tasks and nore detail, run gradle tasks --all

To see nore detail about a task, run gradle help --task <task>

By default, this report shows only those tasks which have been assigned to a task group. Y ou can do this by
setting the gr oup property for the task. You can aso set the descri pti on property, to provide a
description to be included in the report.

Example 4.11. Changing the content of the task report

bui | d. gradl e

dists {
description = 'Builds the distribution'

group = 'build'

You can obtain more information in the task listing using the - - al | option. With this option, the task
report lists all tasks in the project, grouped by main task, and the dependencies for each task. Here is an
example:

Page 31 of 605

Example 4.12. Obtaining mor e infor mation about tasks
Output of gradl e -qg tasks --all

> gradle -q tasks --all

Al'l tasks runnable fromroot project

Default tasks: dists

Bui | d tasks
clean - Deletes the build directory (build)
api:clean - Deletes the build directory (build)
webapp: cl ean - Deletes the build directory (build)
dists - Builds the distribution [api:libs, webapp:!libs]
docs - Builds the docunentation
api:libs - Builds the JAR
api:conpile - Conpiles the source files
webapp: libs - Builds the JAR [api:|ibs]
webapp: conpile - Conpiles the source files

Buil d Setup tasks
init - Initializes a new Gradl e build. [incubating]
wrapper - Cenerates Gradl e wapper files. [incubating]

Hel p tasks

bui | dEnvi ronment - Displays all buildscript dependencies declared in root project 'p
api : bui | dEnvi ronnent - Displays all buildscript dependencies declared in project ':a
webapp: bui | dEnvi ronment - Displays all buildscript dependenci es declared in project
conponents - Displays the conponents produced by root project 'projectReports'. [inc
api : conponents - Displays the conponents produced by project ':api'. [incubating]
webapp: conmponents - Displays the conponents produced by project ':webapp'. [incubati
dependenci es - Displays all dependencies declared in root project 'projectReports'.
api : dependenci es - Displays all dependencies declared in project ':api'.

webapp: dependenci es - Displays all dependencies declared in project ':webapp'.
dependencyl nsight - Displays the insight into a specific dependency in root project
api : dependencyl nsight - Displays the insight into a specific dependency in project
webapp: dependencyl nsight - Displays the insight into a specific dependency in projec
dependent Conponents - Displays the dependent conponents of conponents in root projec
api : dependent Conponents - Di spl ays the dependent conponents of components in project
webapp: dependent Conponents - Displays the dependent conponents of conponents in proj
help - Displays a hel p nessage.

api :hel p - Displays a hel p nessage.

webapp: hel p - Displays a hel p message.

nmodel - Displays the configuration nodel of root project 'projectReports'. [incubati
api : nodel - Displays the configuration nodel of project ':api'. [incubating]
webapp: nodel - Displays the configuration nodel of project ':webapp'. [incubating]

projects - Displays the sub-projects of root project 'projectReports'.

api : projects - Displays the sub-projects of project ':api’.

webapp: proj ects - Displays the sub-projects of project ':webapp'.

properties - Displays the properties of root project 'projectReports'.

api : properties - Displays the properties of project ':api'.

webapp: properties - Displays the properties of project ':webapp'.

tasks - Displays the tasks runnable fromroot project 'projectReports' (sonme of the
api :tasks - Displays the tasks runnable fromproject ':api'.

webapp: tasks - Displays the tasks runnable from project ':webapp'.

Page 32 of 605

4.7.3. Show task usage details

Running gradl e hel p --task sonmeTask gives you detailed information about a specific task or
multiple tasks matching the given task name in your multiproject build. Below is an example of this detailed
information:

Example 4.13. Obtaining detailed help for tasks

Outputof gradl e -q help --task libs

> gradle -gq help --task libs
Detailed task information for |ibs

Pat hs
capi:libs
:webapp: i bs

Type
Task (org.gradle. api. Task)

Description
Bui |l ds the JAR

G oup
buil d

This information includes the full task path, the task type, possible commandline options and the description
of the given task.

4.7.4. Listing project dependencies

Running gr adl e dependenci es gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that configuration
are shown in atree. Below is an example of this report:

Page 33 of 605

Example 4.14. Obtaining infor mation about dependencies
Output of gr adl e - g dependenci es api : dependenci es webapp: dependenci es

> gradl e -q dependenci es api: dependenci es webapp: dependenci es

Project :api - The shared APl for the application

conpil e
\--- org.codehaus. groovy: groovy-all:2.4.7

t est Conpil e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

Proj ect :webapp - The Wb application inplenentation

conpile

+--- project :api

| \--- org.codehaus. groovy: groovy-all:2.4.7
\--- comons-io: commons-io: 1.2

t est Conpi l e

No dependenci es

Since a dependency report can get large, it can be useful to restrict the report to a particular configuration.
Thisis achieved with the optional - - conf i gur at i on parameter:
Example 4.15. Filtering dependency report by configuration

Output of gradl e -qg api : dependenci es --configuration testConpile
> gradl e -q api:dependencies --configuration testConpile

Project :api - The shared APl for the application

t est Compi l e
\--- junit:junit:4.12
\--- org. hantrest: hancrest-core: 1.3

4.7.5. Listing project buildscript dependencies

Running gr adl e bui | dEnvi r onnment visualises the buildscript dependencies of the selected project,
similarly to how gr adl e dependenci es visualises the dependencies of the software being built.

Page 34 of 605

4.7.6. Getting the insight into a particular dependency

Running gr adl e dependencyl nsi ght gives you an insight into a particular dependency (or
dependencies) that match specified input. Below is an example of this report:

Example 4.16. Getting theinsight into a particular dependency
Output of gr adl e -g webapp: dependencyl nsi ght --dependency groovy --configuratior

> gradl e -q webapp: dependencyl nsi ght --dependency groovy --configuration conpile
or g. codehaus. groovy: groovy-all:2.4.7
\--- project :api

\--- compile

This task is extremely useful for investigating the dependency resolution, finding out where certain
dependencies are coming from and why certain versions are selected. For more information please see the
Dependencyl nsi ght Report Task classin the APl documentation.

The built-in dependencylnsight task is a part of the 'Help' tasks group. The task needs to be configured with
the dependency and the configuration. The report looks for the dependencies that match the specified
dependency spec in the specified configuration. If Java related plugins are applied, the dependencylnsight
task is pre-configured with the ‘compile’ configuration because typicaly it's the compile dependencies we
are interested in. You should specify the dependency you are interested in via the command line
"--dependency’ option. If you don't like the defaults you may select the configuration via the '--configuration'
option. For more information see the Dependencyl nsi ght Report Task class in the AP
documentation.

4.7.7. Listing project properties

Running gr adl e properti es givesyou alist of the properties of the selected project. Thisis a snippet
from the output:

Example 4.17. Infor mation about properties
Output of gradl e -q api : properties
> gradle -q api:properties

Project :api - The shared APl for the application

al | projects: [project ':api']

ant: org.gradle.api.internal.project. DefaultAntBuil der @2345

ant Bui | der Factory: org.gradle.api.internal.project. DefaultAntBuil der Fact ory@=2345
artifacts: org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandl er _Decorated@?
asDynam cObj ect: Dynami cObject for project ':api'

baseCl assLoader Scope: org.gradle.api.internal.initialization.DefaultC assLoader Scope
bui | dDi r: /hone/user/ gradl e/ sanpl es/ usergui de/tutorial/projectReports/api/build

bui | dFi | e: /home/ user/ gradl e/ sanpl es/ user gui de/tutorial/projectReports/api/build. gra

Page 35 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.DependencyInsightReportTask.html

4.7.8. Profiling a build

The - - profi | e command line option will record some useful timing information while your build is
running and write a report to the bui | d/ report s/ profi | e directory. The report will be named using
the time when the build was run.

This report lists summary times and details for both the configuration phase and task execution. The times
for configuration and task execution are sorted with the most expensive operations first. The task execution
results also indicate if any tasks were skipped (and the reason) or if tasks that were not skipped did no work.

Builds which utilize a buildSrc directory will generate a second profile report for buildSrc in the bui | dSr ¢/ bui
directory.

Profiled with tasks: -xtest build

Summary Configuration Task
Total Build Time 2:01.164 | |: 2.804 | |:docs
Startup 0.313| | :docs 0.576 :docs:userguideSingleHu
Settings and BuildSrc 4078 | |:core 0.203 :docs:userguidePdf
Loading Projects 0074 | |:announce 0.084 :docs:checkstyle Api
Configuring Projects 3208 | [mi 0.036 :docs:userguideStyleShes
Total Task Execution 1:52.671 | |:openApi 0.035 :docs:groovydoc
‘maven 0.033 :docs:samples
:codeQuality 0.033 :docs:javadoc
‘wrapper 0.022 :docs:userguideFragment
:eclipse 0.021 :docs:distDocs
ridea 0.021 :docs:samplesDocs
:plugins 0.020 :docs:userguide Xhtml
Jlauncher 0.020 :docs:userguideHuml
:antr 0.017 :docs:userguideDocbook
:0sgi 0.014 :docs:remoteUserguideD
jetty 0.014 :docs:samplesDochook
:scala 0.012 :docs:docs
:docs:userguide
core
:core:compileTestGroovy
:core:codenarcTest
:core:checkstyleMain

4.8. Dry Run

Sometimes you are interested in which tasks are executed in which order for agiven set of tasks specified on
the command line, but you don't want the tasks to be executed. You can use the - moption for this. For
example, if yourun “gradl e -m cl ean conpil e”, you'll see al the tasks that would be executed as
part of the cl ean and conpi | e tasks. This is complementary to the t asks task, which shows you the
tasks which are available for execution.

Page 36 of 605

4.9. Summary

In this chapter, you have seen some of the things you can do with Gradle from the command-line. Y ou can
find out more about the gradle command in Appendix D, Gradle Command Line.

Page 37 of 605

5

The Gradle Wrapper

Most tools require installation on your computer before you can use them. If the installation is easy, you
may think that’s fine. But it can be an unnecessary burden on the users of the build. Equally importantly,
will the user install the right version of the tool for the build? What if they’re building an old version of the
software?

The Gradle Wrapper (henceforth referred to as the “Wrapper”) solves both these problems and is the
preferred way of starting a Gradle build.

5.1. Executing a build with the Wrapper

If a Gradle project has set up the Wrapper (and we recommend all projects do so), you can execute the build
using one of the following commands from the root of the project:

® . /gradl ew <t ask> (on Unix-like platforms such as Linux and Mac OS X)
® gradl ew <t ask> (on Windows using the gradlew.bat batch fil€)

Each Wrapper istied to a specific version of Gradle, so when you first run one of the commands above for a
given Gradle version, it will download the corresponding Gradle distribution and use it to execute the build.

Not only does this mean that you don’'t have to manually install
Gradle yourself, but you are also sure to use the version of

Gradle that the build is designed for. This makes your historical IDEs
builds more reliable. Just use the appropriate syntax from above When importing a Gradle
whenever you see a command line starting with gradl e . .. project via its wrapper, your
in the user guide, on Stack Overflow, in articles or wherever. IDE may ask to use the Gradle
‘all' distribution. This is
For completeness sake, and to ensure you don’t delete any perfectly fine and helps the IDE
important files, here are the files and directories in a Gradle provide code completion for the
project that make up the Wrapper: build files.

® gradl ew(Unix Shell script)

® gradl ew. bat (Windows batch file)

® gradl e/ w apper/ gradl e-w apper.jar (Wrapper JAR)

® gradl e/ w apper/ gradl e-w apper . properti es (Wrapper properties)

If you' re wondering where the Gradle distributions are stored, you'll find them in your user home directory
under SUSER_HOME/ . gr adl e/ wr apper/ di st s.

Page 38 of 605

5.2. Adding the Wrapper to a project

The Wrapper is something you should check into version control. By distributing the Wrapper with your
project, anyone can work with it without needing to install Gradle beforehand. Even better, users of the
build are guaranteed to use the version of Gradle that the build was designed to work with. Of course, thisis
also great for continuous integration servers (i.e. servers that regularly build your project) as it requires no
configuration on the server.

You install the Wrapper into your project by running the wr apper task. (This task is aways available,

even if you don't add it to your build). To specify a Gradle version use - - gr adl e- ver si on on the
command-line. By default, the Wrapper will use a bi n distribution. Thisis the smallest Gradle distribution.
Some tools, like Android Studio and Intellij IDEA, provide additional context information when used with
theal | distribution. You may select a different Gradle distribution type by using - - di st ri buti on-type

. You can also set the URL to download Gradle from directly via - - gr adl e-di stri bution-url . If

no version or distribution URL is specified, the Wrapper will be configured to use the gradle version the wr apper
task is executed with. So if you run the wr apper task with Gradle 2.4, then the Wrapper configuration will
default to version 2.4.

Example 5.1. Running the Wrapper task
Output of gr adl e wr apper --gradl e-version 2.0

> gradle wapper --gradle-version 2.0
I Wr apper

BU LD SUCCESSFUL

Total time: 1 secs
The Wrapper can be further customized by adding and configuring a W apper task in your build script, and
then executing it.

Example 5.2. Wrapper task

bui | d. gradl e

task wrapper(type: Wapper) {

gradl eVersion = '2.0'

}

After such an execution you find the following new or updated files in your project directory (in case the
default configuration of the Wrapper task is used).

Page 39 of 605

http://en.wikipedia.org/wiki/Continuous_integration
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Example 5.3. Wrapper generated files
Build layout

si npl e/
gradl ew
gr adl ew. bat

gr adl e/ wr apper/
gr adl e-wr apper. j ar
gr adl e- wr apper . properties

All of these files should be submitted to your version control system. This only needs to be done once. After
these files have been added to the project, the project should then be built with the added gradlew
command. The gradlew command can be used exactly the same way as the gradle command.

If you want to switch to a new version of Gradle you don't need to rerun the wr apper task. It is good
enough to change the respective entry in the gr adl e- wr apper . properti es file but if you want to
take advantage of new functionality in the Gradle wrapper, then you would need to regenerate the wrapper
files.

5.3. Configuration

If you run Gradle with gradlew, the Wrapper checks if a Gradle distribution for the Wrapper is available. If
S0, it delegates to the gradle command of this distribution with all the arguments passed originally to the
gradlew command. If it didn't find a Gradle distribution, it will download it first.

When you configure the W apper task, you can specify the Gradle version you wish to use. The gradlew
command will download the appropriate distribution from the Gradle repository. Alternatively, you can
specify the download URL of the Gradle distribution. The gradlew command will use this URL to
download the distribution. If you specified neither a Gradle version nor download URL, the gradlew
command will download whichever version of Gradle was used to generate the Wrapper files.

For the details on how to configure the Wrapper, seethe W apper classin the API documentation.

If you don't want any download to happen when your project is built via gradlew, simply add the Gradle
distribution zip to your version control at the location specified by your Wrapper configuration. A relative
URL is supported - you can specify adistribution file relative to the location of gr adl e- wr apper . properti«
file.

If you build viathe Wrapper, any existing Gradle distribution installed on the machine isignored.

5.4. Authenticated Gradle distribution download

The Gradle W apper can download Gradle distributions from
servers using HTTP Basic Authentication. This enables you to
host the Gradle distribution on a private protected server. You
can specify a username and password in two different ways HTTP Basic Authentication
depending on your use case: as system properties or directly should only be used with HTTPS

Security Warning

Page 40 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

embedded in the di stri buti onUrl . Credentias in system URLs and not plain HTTP ones.
properties take precedence over the ones embedded in di st ri but i onWith Basic Authentication, the
user credentials are sent in clear

text.
Using system properties can be doneinthe. gr adl e/ gr adl e. properties

file in the user's home directory, or by other means, see
Section 12.1, “Configuring the build environment via
gradle.properties’.

Example 5.4. Specifying the HT TP Basic Authentication credentials using system properties

gradl e. properties

syst enPr op. gr adl e. wr apper User =user nane
syst enPr op. gr adl e. w apper Passwor d=passwor d

Embedding credentialsinthedi st ri buti onUr| inthegr adl e/ w apper/ gr adl e- w apper . propert
file also works. Please note that this file is to be committed into your source control system. Shared
credentials embedded indi st ri buti onUr | should only be used in a controlled environment.

Example 5.5. Specifying the HT TP Basic Authentication credentialsin di stri buti onUr |

gr adl e-wr apper . properties

di stributionUrl=https://usernane: passwor d@onehost/ pat h/to/ gradl e-di stri buti on. 2

This can be used in conjunction with a proxy, authenticated or not. See Section 12.3, “Accessing the web via
aproxy” for more information on how to configure the W apper to use aproxy.

5.5. Verification of downloaded Gradle
distributions

The Gradle Wrapper alows for verification of the downloaded Gradle distribution via SHA-256 hash sum
comparison. This increases security against targeted attacks by preventing a man-in-the-middle attacker
from tampering with the downloaded Gradle distribution.

To enable this feature you'll want to first calculate the SHA-256 hash of a known Gradle distribution. Y ou
can generate a SHA-256 hash from Linux and OSX or Windows (via Cygwin) with the shasum command.

Example 5.6. Generating a SHA-256 hash

> shasum -a 256 gradle-2.4-all.zip
371ch9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b82368bcf 10 gradl e- 2. 4-al |

Add the returned hash sum to the gr adl e- wr apper . properti es usingthedi st ri buti onSha256Sum
property.

Page 41 of 605

https://www.cygwin.com/

Example5.7. Configuring SHA-256 checksum verification

gr adl e-wr apper . properties

di stributi onSha256Sum=371ch9f bebbe9880d147f 59bab36d6leeel22854ef 8c9eelecf 12b8234

5.6. Unix file permissions

The Wrapper task adds appropriate file permissions to allow the execution of the gr adl ew *NIX
command. Subversion preserves this file permission. We are not sure how other version control systems deal
with this. What should always work isto execute “sh gr adl ew’.

Page 42 of 605

6

The Gradle Daemon

From Wikipedia...

A daemon is a computer program that runs as a background process, rather than being under the
direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries that require a
non-trivial initialization time. As aresult, it can sometimes seem a little slow to start. The solution to this
problem is the Gradle Daemon: a long-lived background process that executes your builds much more
quickly than would otherwise be the case. We accomplish this by avoiding the expensive bootstrapping
process as well as leveraging caching, by keeping data about your project in memory. Running Gradle
builds with the Daemon is no different than without. Simply configure whether you want to use it or not -
everything elseis handled transparently by Gradle.

6.1. Why the Gradle Daemon is important for
performance

The Daemon is a long-lived process, so not only are we able to avoid the cost of VM startup for every
build, but we are able to cache information about project structure, files, tasks, and more in memory.

The reasoning is simple: improve build speed by reusing computations from previous builds. However, the
benefits are dramatic: we typically measure build times reduced by 15-75% on subsequent builds. We
recommend profiling your build by using - - profi | e to get a sense of how much impact the Gradle
Daemon can have for you.

The Gradle Daemon is enabled by default starting with Gradle 3.0, so you don't have to do anything to
benefit fromit.

6.2. Running Daemon Status

To get alist of running Gradle Daemons and their statuses use the --status command.

Sample output:

Page 43 of 605

Pl D VERSI ON STATUS

28411 3.0 | DLE
34247 3.0 BUSY

Currently, a given Gradle version can only connect to daemons of the same version. This means the status
output will only show Daemons for the version of Gradle being invoked and not for any other versions.
Future versions of Gradle will lift this constraint and will show the running Daemons for all versions of
Gradle.

6.3. Disabling the Daemon

The Gradle Daemon is enabled by default, and we recommend always enabling it for developers' machines.
There are several ways to disable the Daemon, but the most common one isto add the line

org. gradl e. daenon=f al se

to the file «<USER_HOVE»/ . gr adl e/ gr adl e. properti es, where «USER_HOVE» is your home
directory. That's typically one of the following, depending on your platform:

® C:.\Users\<usernanme> (WindowsVista& 7+)
¢ [/ User s/ <user name> (Mac OS X)
* / home/ <user nanme> (Linux)

If that file doesn't exist, just create it using a text editor. You can find details of other ways to disable (and
enable) the Daemon in Section 6.5, “FAQ” further down. That section aso contains more detailed
information on how the Daemon works.

Once you have globally enabled the Daemon in this way, al your builds will take advantage of the speed
boost, regardless of the version of Gradle a particular build uses.

Continuous

6.4. Stopping an existing integration
Daemon

At the moment, we recommend

As mentioned, the Daemon is a background process. You that you disable the Daemon for
needn’t worry about a build up of Gradle processes on your Continuous Integration servers
machine, though. Every Daemon monitors its memory usage as correctness is usualy a
compared to total system memory and will stop itself if idle priority over speed in CI
when available system memory is low. If you want to explicitly environments. Using a fresh
stop running Daemon processes for any reason, just use the runtime for each build is more
command gr adl e - - st op. reliable since the runtime is
completely isolated from any
This will terminate all Daemon processes that were started with previous builds. Additionally,
the same version of Gradle used to execute the command. If you since the Daemon primarily acts

Page 44 of 605

have the Java Development Kit (JDK) installed, you can easily to reduce build startup times,
verify that a Daemon has stopped by running the jps command. thisisn't as critical in Cl asitis
You'll see any running Daemons listed with the name Gr adl eDaenon on adeveloper's machine.

6.5. FAQ

6.5.1. How do | disable the Gradle Daemon?

There are two recommended ways to disable the Daemon persistently for an environment:

* Via environment variables: add the flag - Dor g. gr adl e. daenon=f al se to the GRADLE_OPTS
environment variable
Viapropertiesfile: add or g. gr adl e. daenon=f al se tothe «<GRADLE_USER_HOVE»/ gr adl e. pr ope
file

Note, «GRADLE_USER _HOME» defaults to «USER_HOME»/ . gr adl e, where «USER_HOVE» is

the home directory of the current user. This location can be configured viathe - g and - - gr adl e- user - hor
command line switches, aswell as by the GRADLE_USER_HOVE environment variable and or g. gr adl e. us
JVM system property.

Both approaches have the same effect. Which one to use is up to personal preference. Most Gradle users
choose the second option and add the entry to the user gr adl e. pr operti es file.

On Windows, this command will disable the Daemon for the current user:

(if not exist "%JSERPROFILEY . gradle" nkdir "%JSERPROFILEY% . gradle") && (echo.

On UNIX-like operating systems, the following Bash shell command will disable the Daemon for the
current user:

nkdir -p ~/.gradl e & echo "org. gradl e. daenon=f al se" >> ~/.gradl e/ gradl e. propert

Once the Daemon is disabled for a build environment in this way, a Gradle Daemon will not be started
unless explicitly requested using the - - daernon option.

The - - daenon and - - no- daenmon command line options enable and disable usage of the Daemon for
individual build invocations when using the Gradle command line interface. These command line options
have the highest precedence when considering the build environment. Typically, it is more convenient to
enable the Daemon for an environment (e.g. a user account) so that all builds use the Daemon without
requiring to remember to supply the - - daenon option.

Page 45 of 605

6.5.2. Why is there more than one Daemon process on my machine?

There are severa reasons why Gradle will create a new Daemon, instead of using one that is aready
running. The basic rule is that Gradle will start a new Daemon if there are no existing idle or compatible
Daemons available. Gradle will kill any Daemon that has been idle for 3 hours or more, so you don't have to
worry about cleaning them up manually.

idle
Anidle Daemonis onethat is not currently executing a build or doing other useful work.

compatible
A compatible Daemon is one that can (or can be made to) meet the requirements of the requested build
environment. The Java runtime used to execute the build is an example aspect of the build environment.
Another exampleisthe set of VM system properties required by the build runtime.

Some aspects of the requested build environment may not be met by an Daemon. If the Daemon is running
with a Java 7 runtime, but the requested environment calls for Java 8, then the Daemon is not compatible
and another must be started. Moreover, certain properties of a Java runtime cannot be changed once the
JVM has started. For example, it is not possible to change the memory alocation (e.g. - Xnx1024m),
default text encoding, default locale, etc of arunning VM.

The “requested build environment” is typically constructed implicitly from aspects of the build client’s (e.g.
Gradle command line client, IDE etc.) environment and explicitly via command line switches and settings.
See Chapter 12, The Build Environment for details on how to specify and control the build environment.

The following VM system properties are effectively immutable. If the requested build environment requires
any of these properties, with a different value than a Daemon’s VM has for this property, the Daemon is not
compatible.

¢ file.encoding

® user.language

® user.country

® user.variant

® javaio.tmpdir

® javax.net.ssl.keyStore

® javax.net.ssl.keyStorePassword
® javax.net.sdl.keyStoreType

® javax.net.sdl.trustStore

® javax.net.ssl.trustStorePassword
® javax.net.sd.trustStoreType

® com.sun.management.jmxremote

The following JVM attributes, controlled by startup arguments, are also effectively immutable. The
corresponding attributes of the requested build environment and the Daemon’s environment must match
exactly in order for a Daemon to be compatible.

® The maximum heap size (i.e. the -Xmx VM argument)
® The minimum heap size (i.e. the -Xms JVM argument)

Page 46 of 605

® The boot classpath (i.e. the -Xbootclasspath argument)
® The"“assertion” status (i.e. the -ea argument)

The required Gradle version is another aspect of the requested build environment. Daemon processes are
coupled to a specific Gradle runtime. Working on multiple Gradle projects during a session that use different
Gradle versionsis a common reason for having more than one running Daemon process.

6.5.3. How much memory does the Daemon use and can | give it more?

If the requested build environment does not specify a maximum heap size, the Daemon will use up to 1GB
of heap. It will use your the IVM's default minimum heap size. 1GB is more than enough for most builds.
Larger builds with hundreds of subprojects, lots of configuration, and source code may require, or perform
better, with more memory.

To increase the amount of memory the Daemon can use, specify the appropriate flags as part of the
requested build environment. Please see Chapter 12, The Build Environment for details.

6.5.4. How can | stop a Daemon?

Daemon processes will automatically terminate themselves after 3 hours of inactivity or less. If you wish to

stop a Daemon process before this, you can either kill the process via your operating system or runthe gr adl e -
command. The - - st op switch causes Gradle to request that all running Daemon processes, of the same
Gradle version used to run the command, terminate themselves.

6.5.5. What can go wrong with Daemon?

Considerable engineering effort has gone into making the Daemon robust, transparent and unobtrusive
during day to day development. However, Daemon processes can occasionally be corrupted or exhausted. A
Gradle build executes arbitrary code from multiple sources. While Gradle itself is designed for and heavily
tested with the Daemon, user build scripts and third party plugins can destabilize the Daemon process
through defects such as memory leaks or global state corruption.

It is also possible to destabilize the Daemon (and build environment in general) by running builds that do
not release resources correctly. Thisis a particularly poignant problem when using Microsoft Windows as it
islessforgiving of programs that fail to close files after reading or writing.

Gradle actively monitors heap usage and attempts to detect when aleak is starting to exhaust the available
heap space in the daemon. When it detects a problem, the Gradle daemon will finish the currently running
build and proactively restart the daemon on the next build. This monitoring is enabled by default, but can be
disabled by setting the org. gradl e. daenon. perfor mance. enabl e-noni t ori ng system
property to false.

If it is suspected that the Daemon process has become unstable, it can simply be killed. Recall that the - - no- dae
switch can be specified for a build to prevent use of the Daemon. This can be useful to diagnose whether or
not the Daemon is actually the culprit of a problem.

Page 47 of 605

6.6. When should | not use the Gradle Daemon?

It is recommended that the Daemon is used in al developer environments. It is recommend to disable the
Daemon for Continuous Integration and build server environments.

The Daemon enables faster builds, which is particularly important when a human is sitting in front of the
build. For CI builds, stability and predictability is of utmost importance. Using a fresh runtime (i.e. process)
for each build is more reliable as the runtime is completely isolated from previous builds.

6.7. Tools & IDEs

The Gradle Tooling API (see Chapter 14, Embedding Gradle using the Tooling API), that is used by IDES
and other tools to integrate with Gradle, always use the Gradle Daemon to execute builds. If you are
executing Gradle builds from within you're IDE you are using the Gradle Daemon and do not need to enable
it for your environment.

However, unless you have explicitly enabled the Gradle Daemon for you environment your builds from the
command line will not use the Gradle Daemon.

6.8. How does the Gradle Daemon make builds
faster?

The Gradle Daemon is a long lived build process. In between builds it waits idly for the next build. This has
the obvious benefit of only requiring Gradle to be loaded into memory once for multiple builds, as opposed
to once for each build. Thisin itself isasignificant performance optimization, but that's not where it stops.

A significant part of the story for modern VM performance is runtime code optimization. For example,
HotSpot (the VM implementation provided by Oracle and used as the basis of OpenJDK) applies
optimization to code while it is running. The optimization is progressive and not instantaneous. That is, the
code is progressively optimized during execution which means that subsequent builds can be faster purely
due to this optimization process. Experiments with HotSpot have shown that it takes somewhere between 5
and 10 builds for optimization to stabilize. The difference in perceived build time between the first build and
the 10th for a Daemon can be quite dramatic.

The Daemon also allows more effective in memory caching across builds. For example, the classes needed
by the build (e.g. plugins, build scripts) can be held in memory between builds. Similarly, Gradle can
maintain in-memory caches of build data such as the hashes of task inputs and outputs, used for incremental
building.

Page 48 of 605

6.8.1. Potential future enhancements

Currently, the Daemon makes builds faster by effectively supporting in memory caching and by the VM
optimizer making the code faster. In future Gradle versions, the Daemon will become even smarter and
perform work preemptively. It could, for example, start downloading dependencies immediately after the

build script has been edited under the assumption that the build is about to be run and the newly changed or
added dependencies will be required.

There are many other ways in that the Gradle Daemon will enable even faster builds in future Gradle
versions.

Page 49 of 605

v

Dependency M anagement Basics

This chapter introduces some of the basics of dependency management in Gradle.

7.1. What is dependency management?

Very roughly, dependency management is made up of two pieces. Firstly, Gradle needs to know about the
things that your project needs to build or run, in order to find them. We call these incoming files the
dependencies of the project. Secondly, Gradle needs to build and upload the things that your project
produces. We call these outgoing files the publications of the project. Let's ook at these two piecesin more
detail:

Most projects are not completely self-contained. They need files built by other projects in order to be
compiled or tested and so on. For example, in order to use Hibernate in my project, | need to include some
Hibernate jars in the classpath when | compile my source. To run my tests, | might also need to include
some additional jarsin the test classpath, such as a particular JDBC driver or the Ehcache jars.

These incoming files form the dependencies of the project. Gradle alows you to tell it what the
dependencies of your project are, so that it can take care of finding these dependencies, and making them
available in your build. The dependencies might need to be downloaded from a remote Maven or lvy
repository, or located in a local directory, or may need to be built by another project in the same
multi-project build. We call this process dependency resolution.

Note that this feature provides a major advantage over Ant. With Ant, you only have the ability to specify
absolute or relative paths to specific jars to load. With Gradle, you simply declare the “names’ of your
dependencies, and other layers determine where to get those dependencies from. You can get similar
behavior from Ant by adding Apache lvy, but Gradle does it better.

Often, the dependencies of a project will themselves have dependencies. For example, Hibernate core
requires several other libraries to be present on the classpath with it runs. So, when Gradle runs the tests for
your project, it also needs to find these dependencies and make them available. We call these transitive

dependencies.

The main purpose of most projectsis to build some files that are to be used outside the project. For example,
if your project produces a Java library, you need to build a jar, and maybe a source jar and some
documentation, and publish them somewhere.

These outgoing files form the publications of the project. Gradle also takes care of this important work for
you. You declare the publications of your project, and Gradle take care of building them and publishing
them somewhere. Exactly what “publishing” means depends on what you want to do. You might want to

Page 50 of 605

copy thefilesto alocal directory, or upload them to aremote Maven or lvy repository. Or you might use the
filesin another project in the same multi-project build. We call this process publication.

7.2. Declaring your dependencies

Let'slook at some dependency declarations. Here's a basic build script:

Example 7.1. Declaring dependencies

bui | d. gradl e

apply plugin: 'java

repositories {
mavenCentral ()

}

dependenci es {
conpi l e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fing
testConpile group: 'junit', nane: 'junit', version: '4.+

What's going on here? This build script says a few things about the project. Firstly, it states that Hibernate
core 3.6.7.Fina isrequired to compile the project's production source. By implication, Hibernate core and its
dependencies are also required at runtime. The build script also states that any junit >= 4.0 is required to
compile the project’s tests. It also tells Gradle to look in the Maven central repository for any dependencies
that are required. The following sections go into the details.

7.3. Dependency configurations

In Gradle dependencies are grouped into configurations. A configuration is simply a named set of
dependencies. We will refer to them as dependency configurations. Y ou can use them to declare the external
dependencies of your project. As we will see later, they are also used to declare the publications of your
project.

The Java plugin defines a number of standard configurations. These configurations represent the classpaths
that the Java plugin uses. Some are listed below, and you can find more details in Table 46.5, “ Java plugin -
dependency configurations”.

compile
The dependencies required to compile the production source of the project.

runtime
The dependencies required by the production classes at runtime. By default, also includes the compile
time dependencies.

testCompile
The dependencies required to compile the test source of the project. By default, also includes the
compiled production classes and the compile time dependencies.

Page 51 of 605

testRuntime
The dependencies required to run the tests. By default, also includes the compile, runtime and test
compile dependencies.

Various plugins add further standard configurations. Y ou can also define your own custom configurations to
use in your build. Please see Section 24.3, “Dependency configurations” for the details of defining and
customizing dependency configurations.

7.4. External dependencies

There are various types of dependencies that you can declare. One such type is an external dependency.
This is a dependency on some files built outside the current build, and stored in a repository of some kind,
such as Maven central, or a corporate Maven or lvy repository, or adirectory in the local file system.

To define an external dependency, you add it to a dependency configuration:

Example 7.2. Definition of an external dependency

bui | d. gradl e

dependenci es {

conpil e group: 'org. hibernate', nane: 'hibernate-core', version: '3.6.7.Fing

}

An external dependency is identified using gr oup, nane and ver si on attributes. Depending on which
kind of repository you are using, gr oup and ver si on may be optional.

The shortcut form for declaring external dependencieslookslike“ gr oup: nane: versi on”.

Example 7.3. Shortcut definition of an external dependency
bui |l d. gradl e

dependenci es {
conpi |l e ' org. hi bernat e: hi bernat e-core: 3. 6. 7. Fi nal

}

To find out more about defining and working with dependencies, have a look at Section 24.4, “How to
declare your dependencies’.

7.5. Repositories

How does Gradle find the files for external dependencies? Gradle looks for them in a repository. A
repository isreally just a collection of files, organized by gr oup, nane and ver si on. Gradle understands
several different repository formats, such as Maven and lvy, and several different ways of accessing the
repository, such as using the local file system or HTTP.

By default, Gradle does not define any repositories. You need to define at least one before you can use
external dependencies. One option is use the Maven central repository:

Page 52 of 605

Example 7.4. Usage of Maven central repository

bui | d. gradl e

repositories {

mavenCent ral ()

}

Or Bintray's JCenter:

Example 7.5. Usage of JCenter repository
bui |l d. gradl e

repositories {
jcenter()

}

Or aany other remote Maven repository:

Example 7.6. Usage of aremote Maven repository
bui |l d. gradl e

repositories {
maven {
url "http://repo. myconpany. conl maven2"

}

Or aremote lvy repository:

Example 7.7. Usage of aremote vy directory
buil d. gradl e

repositories {
ivy {
url "http://repo. myconpany. coni repo"

}

Y ou can aso have repositories on the local file system. Thisworks for both Maven and Ivy repositories.

Example 7.8. Usage of a local Ivy directory
bui |l d. gradl e
repositories {

ivy {
/1l URL can refer to a |local directory

url "../local -repo"

Page 53 of 605

A project can have multiple repositories. Gradle will look for a dependency in each repository in the order
they are specified, stopping at the first repository that contains the requested module.

To find out more about defining and working with repositories, have alook at Section 24.6, “ Repositories’.

7.6. Publishing artifacts

Dependency configurations are also used to publish files.l? We call these files publication artifacts, or
usualy just artifacts.

The plugins do a pretty good job of defining the artifacts of a project, so you usually don't need to do
anything special to tell Gradle what needs to be published. However, you do need to tell Gradle where to
publish the artifacts. You do this by attaching repositories to the upl oadAr chi ves task. Here's an
example of publishing to aremote Ivy repository:

Example 7.9. Publishing to an Ivy repository

bui | d. gradl e

upl oadAr chi ves {
repositories {
vy {
credentials {
user nane "usernanme"
password " pw'

}

url "http://repo. nyconpany. cont'

Now, when you run gr adl e upl oadAr chi ves, Gradle will build and upload your Jar. Gradle will also
generateand upload ani vy. xm aswell.

You can also publish to Maven repositories. The syntax is slightly different.[3 Note that you also need to
apply the Maven plugin in order to publish to a Maven repository. when thisisin place, Gradle will generate
and upload apom xmi .

Example 7.10. Publishing to a Maven repository

bui | d. gradl e

apply plugin: 'maven'

upl oadAr chi ves {
repositories {

mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")

To find out more about publication, have alook at Chapter 31, Publishing artifacts.

Page 54 of 605

7.7. Where to next?

For all the details of dependency resolution, see Chapter 24, Dependency Management, and for artifact
publication see Chapter 31, Publishing artifacts.

If you are interested in the DSL elements mentioned here, have a look at
Proj ect.configurations{},Project.repositories{} andProject.dependenci es{}.

Otherwise, continue on to some of the other tutorids.

[2] Wethink thisis confusing, and we are gradually teasing apart the two conceptsin the Gradle DSL.

[3] We are working to make the syntax consistent for resolving from and publishing to Maven repositories.

Page 55 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)

8

| ntroduction to multi-project builds

Only the smallest of projects has a single build file and source tree, unless it happens to be a massive,
monolithic application. It's often much easier to digest and understand a project that has been split into
smaller, inter-dependent modules. The word “inter-dependent” is important, though, and is why you
typically want to link the modules together through a single build.

Gradle supports this scenario through multi-project builds.

8.1. Structure of a multi-project build

Such builds comein all shapes and sizes, but they do have some common characteristics:

* Asettings. gradl efileintheroot or mast er directory of the project

®* Abuil d. gradl e fileintheroot or mast er directory

® Child directories that have their own *. gr adl e build files (some multi-project builds may omit child
project build scripts)

Thesettings. gradl e file tells Gradle how the project and subprojects are structured. Fortunately, you
don’'t have to read this file smply to learn what the project structureis as you can run the command gr adl e pr c
. Here's the output from using that command on the Java multiproject build in the Gradle samples:

Example 8.1. Listing the projectsin a build
Output of gradl e -q projects

> gradle -q projects

Root project 'nultiproject’

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared

| \--- Project ':services:webservice'
\--- Project ':shared

To see a list of the tasks of a project, run gradl e <project-path>:tasks
For exanple, try running gradle :api:tasks

This tells you that multiproject has three immediate child projects: api, services and shared. The services

Page 56 of 605

project then has its own children, shared and webservice. These map to the directory structure, so it's easy
to find them. For example, you can find webservice in <r oot >/ ser vi ces/ webser vi ce.

By default, Gradle uses the name of the directory it findsthe set ti ngs. gr adl e as the name of the root
project. This usually doesn't cause problems since al developers check out the same directory name when
working on a project. On Continuous Integration servers, like Jenkins, the directory name may be
auto-generated and not match the name in your VCS. For that reason, it's recommended that you always set
the root project name to something predictable, even in single project builds. You can configure the root
project name by setting r oot Pr oj ect . nane.

Each project will usually have its own build file, but that's not necessarily the case. In the above example,
the services project is just a container or grouping of other subprojects. There is no build file in the
corresponding directory. However, multiproject does have one for the root project.

The root bui | d. gr adl e is often used to share common configuration between the child projects, for
example by applying the same sets of plugins and dependencies to al the child projects. It can also be used
to configure individual subprojects when it is preferable to have al the configuration in one place. This
means you should always check the root build file when discovering how a particular subproject is being
configured.

Another thing to bear in mind is that the build files might not be called bui | d. gr adl e. Many projects

will name the build files after the subproject names, such as api . gr adl e and ser vi ces. gr adl e from

the previous example. Such an approach helpsalot in IDEs because it’s tough to work out which bui | d. gr adl
file out of twenty possibilities is the one you want to open. This little piece of magic ishandled by the set t i ngs
file, but as a build user you don’t need to know the details of how it's done. Just have a look through the
child project directoriesto find the fileswith the . gr adl e suffix.

Once you know what subprojects are available, the key question for a build user is how to execute the tasks
within the project.

8.2. Executing a multi-project build

From a user's perspective, multi-project builds are still collections of tasks you can run. The difference is
that you may want to control which project's tasks get executed. Y ou have two options here:

® Changeto the directory corresponding to the subproject you' re interested in and just execute gr adl e <t ask
asnhormal.

* Useagquadified task name from any directory, although thisis usually done from the root. For example: gr adl
will build the webservice subproject and any subprojects it depends on.

The first approach is similar to the single-project use case, but Gradle works slightly differently in the case
of a multi-project build. The command gr adl e t est will execute the t est task in any subprojects,
relative to the current working directory, that have that task. So if you run the command from the root
project directory, you'll runt est in api, shared, services:shared and services.webservice. If you run the

command from the services project directory, you'll only execute the task in services:.shared and
services:webservice.

For more control over what gets executed, use qualified names (the second approach mentioned). These are

Page 57 of 605

paths just like directory paths, but use ‘" instead of /" or ‘\'. If the path begins with a‘:’, then the path is
resolved relative to the root project. In other words, the leading ‘' represents the root project itself. All other
colons are path separators.

This approach works for any task, so if you want to know what tasks are in a particular subproject, just use
thet asks task, eg. gradl e : servi ces: webservi ce: t asks .

Regardless of which technique you use to execute tasks, Gradle will take care of building any subprojects
that the target depends on. You don’t have to worry about the inter-project dependencies yourself. If you're
interested in how thisis configured, you can read about writing multi-project builds later in the user guide.

There' s one last thing to note. When you’ re using the Gradle wrapper, the first approach doesn’t work well
because you have to specify the path to the wrapper script if you're not in the project root. For example, if
you're in the webservice subproject directory, you would havetorun. ./ ../ gradl ew bui | d.

That’s all you really need to know about multi-project builds as a build user. Y ou can now identify whether
a build is a multi-project one and you can discover its structure. And finally, you can execute tasks within
specific subprojects.

Page 58 of 605

9

Continuous build

Continuous build is an incubating feature. This means that it is incomplete and not yet at regular
Gradle production quality. This also means that this Gradle User Guide chapter is awork in progress.

Typicaly, you ask Gradle to perform a single build by way of specifying tasks that Gradle should execute.
Gradle will determine the the actual set of tasks that need to be executed to satisfy the request, execute them
al, and then stop doing work until the next request. A continuous build differs in that Gradle will keep
satisfying the initial build request (until instructed to stop) by executing the build when it is detected that the
result of the previous build is now out of date. For example, if your build compiles Java source files to Java
class files, a continuous build would automatically initiate a compile when the source files change.
Continuous build is useful for many scenarios.

9.1. How do | start and stop a continuous build?

A continuous build can be started by supplying either the - - cont i nuous or -t switchesto Gradle, along

with the list of tasks, switches and arguments that define the work to do. For example, gr adl e buil d --cont
. This will have the same effect as running gr adl e bui | d, but instead of Gradle exiting when done, it

will wait for changes to the build inputs. When a change occurs, gr adl e bui | d will be automatically
executed again and the process repeats.

If Gradle is attached to an interactive input source, such as aterminal, the continuous build can be exited by
pressing CTRL- D (On Microsoft Windows, it is required to also press ENTER or RETURN after CTRL- D).
If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build process
must be terminated (e.g. using the ki | I command or similar). If the build is being executed via the Tooling
AP, the build can be cancelled using the Tooling API's cancellation mechanism.

9.2. What will cause a subsequent build?

At thistime, only changes to task inputs are noticed. Gradle will
start watching for changes just before the task starts to execute.

No other changes will initiate a build. For example, changes to T file InpUtS
build scripts and build logic will not initiate build. Likewise, Task implementations declare
changes to files that are read during the configuration of the their file system inputs by

annotating their properties with
I nput Fi | es and other similar

Page 59 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/InputFiles.html

build, not the execution, will not initiate a build. In order to annotations. Please see
incorporate such changes, the continuous build must be restarted Section 18.9, “Up-to-date
manually. checks (AKA Incremental

Build)” for more information.
Consider a typical build using the Java plugin, using the

conventional filesystem layout. The following diagram
visualizes the task graph for gr adl e bui | d:

Figure 9.1. Java plugin task graph

compileJava
processResources

Classes

test

clean

The following key tasks of the graph use filesin the corresponding directories as inputs:

compileJava
src/ main/java
processResour ces
src/ mai n/ resour ces
compileTestJava
src/test/java
processT estResour ces
src/test/resources

Assuming that the initial build is successful (i.e. the bui | d task and its dependencies complete without
error), changes to filesin, or the addition/remove of files from, the locations listed above will initiate a new
build. If achange is made to aJava sourcefilein sr ¢/ mai n/ j ava, the build will fire and all tasks will be
scheduled. Gradle's incremental build support ensures that only the tasks that are actually affected by the
change are executed.

If the change to the main Java source causes compilation to fail, subsequent changesto the test sourcein src/ t e
will not initiate a new build. As the test source depends on the main source, there is no point building until

the main source has changed, potentially fixing the compilation error. After each build, only the inputs of

the tasks that actually executed will be monitored for changes.

Continuous build isin no way coupled to compilation. It works for all types of tasks. For example, the pr ocessF
task copies and processes the files from sr ¢/ mai n/ r esour ces for inclusion in the built JAR. Assuch, a
change to any filein this directory will also initiate a build.

Page 60 of 605

9.3. Limitations and quirks

There are several issuesto be aware with the current implementation of continuous build. These are likely to
be addressed in future Gradle rel eases.

9.3.1. Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs while
executing, Gradle will detect the change and trigger a new build. If every time the task executes, the inputs
are modified again, the build will be triggered again. This isn't unique to continuous build. A task that
modifiesits own inputs will never be considered up-to-date when run "normally" without continuous build.

If your build enters abuild cycle like this, you can track down the task by looking at the list of files reported
changed by Gradle. After identifying the file(s) that are changed during each build, you should look for a

task that has that file as an input. In some cases, it may be obvious (e.g., a Javafileis compiled with conpi | eJa

). In other cases, you can use - - i nf o logging to find the task that is out-of-date due to the identified files.

9.3.2. Restrictionswith Java 9

Due to class access restrictions related to Java 9, Gradle cannot set some operating system specific options,
which means that:

® OnMac OS X, Gradlewill pall for file changes every 10 seconds instead of every 2 seconds.
® On Windows, Gradle must use individual file watches (like on Linux/Mac OS), which may cause
continuous build to no longer work on very large projects.

9.3.3. Performance and stability

The JDK file watching facility relies on inefficient file system polling on Mac OS X (see: JDK-7133447).
This can significantly delay notification of changes on large projects with many source files.

Additionally, the watching mechanism may deadlock under heavy load on Mac OS X (see: JDK-8079620).
This will manifest as Gradle appearing not to notice file changes. If you suspect this is occurring, exit
continuous build and start again.

On Linux, OpendDK's implementation of the file watch service can sometimes miss file system events (see:
JDK-8145981).

9.3.4. Changes to symbolic links

® Creating or removing symbolic link to fileswill initiate a build.

* Modifying the target of asymbolic link will not cause arebuild.

® Creating or removing symbolic links to directories will not cause rebuilds.

® Creating new filesin the target directory of a symbolic link will not cause arebuild.
® Dédleting the target directory will not cause arebuild.

Page 61 of 605

https://bugs.openjdk.java.net/browse/JDK-7133447
https://bugs.openjdk.java.net/browse/JDK-8079620
https://bugs.openjdk.java.net/browse/JDK-8145981

9.3.5. Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means that
changes to task configuration, or any other change to the build model, are effectively ignored.

Page 62 of 605

10

Composite builds

Composite build is an incubating feature. While useful for many use cases, there are bugs to be
discovered, rough edges to smooth, and enhancements we plan to make. Thanks for trying it out!

10.1. What is a composite build?

A composite build is simply a build that includes other builds. In many ways a composite build is similar to
a Gradle multi-project build, except that instead of including single pr oj ect s, complete bui | ds are
included.

Composite builds alow you to:
* combine builds that are usually developed independently, for instance when trying out a bug fix in a
library that your application uses
® decompose a large multi-project build into smaller, more isolated chunks that can be worked in
independently or together as needed

A build that is included in a composite build is referred to, naturally enough, as an "included build".
Included builds do not share any configuration with the composite build, or the other included builds. Each
included build is configured and executed in isolation.

Included builds interact with other builds via dependency substitution. If any build in the
composite has a dependency that can be satisfied by the included build, then that dependency will be
replaced by a project dependency on the included build.

By default, Gradle will attempt to determine the dependencies that can be substituted by an included build.
However for more flexibility, it is possible to explicitly declare these substitutions if the default ones
determined by Gradle are not correct for the composite. See Section 10.3, “Declaring the dependencies
substituted by an included build”.

As well as consuming outputs via project dependencies, a composite build can directly declare task
dependencies on included builds. Included builds are isolated, and are not able to declare task dependencies
on the composite build or on other included builds. See Section 10.4, “Depending on tasks in an included
build”.

Page 63 of 605

10.2. Defining a composite build

The following examples demonstrate the various ways that 2 Gradle builds that are normally developed
separately can be combined into a composite build. For these examples, the my- ut i | s multi-project build
produces 2 different java libraries (nunber-utils and string-utils), and the my-app build
produces an executable using functions from those libraries.

The ny-app build does not have direct dependencies on my-utils. Instead, it declares binary
dependencies on the libraries produced by ny- uti | s.
Example 10.1. Dependencies of my-app

ny-app/ bui | d. gradl e
apply plugin: 'java
apply plugin: "application
apply plugin: 'idea'

group “"org.sanple"
version "1.0"

mai nCl assNane = "org. sanpl e. myapp. Mai n"

dependenci es {
conpi l e "org. sanpl e: nunber-utils:1.0"
conpile "org.sanple:string-utils:1.0"

}

repositories {
jcenter ()

}

Note: The code for this example can be found at sanpl es/ conposi t eBui | ds/ basi ¢ in the
‘-all’ distribution of Gradle.

10.2.1. Defining a composite build via- - i ncl ude-bui | d

The - - i ncl ude- bui | d command-line argument turns the executed build into a composite, substituting
dependencies from the included build into the executed build.

Page 64 of 605

Example 10.2. Declaring a command-line composite
Output of gradl e --include-build ../my-utils run

> gradle --include-build ../ny-utils run

[conposite-build] Configuring build: /home/user/gradl e/ sanpl es/ conpositeBuil ds/ basic
:conpi | eJava

sny-utils:nunber-utils:conpil elava
my-utils:nunmber-utils: processResources UP-TO DATE
my-utils:nunmber-utils:classes
my-utils:nunber-utils:jar
my-utils:string-utils:conpileJava
my-utils:string-utils: processResources UP-TO DATE
my-utils:string-utils:classes
my-utils:string-utils:jar

: processResources UP- TO DATE

:cl asses

irun

The answer is 42

BUI LD SUCCESSFUL

10.2.2. Defining a composite build viaset t i ngs. gradl e

It's possible to make the above arrangement persistent, by using
Settings.includeBuil d(java. | ang. Obj ect) todeclaretheincluded buildinthesetti ngs. gr adl
file. The setti ngs. gradl e file can be used to add subprojects and included builds at the same time.
Included builds are added by location. See the examples below for more details.

10.2.3. Defining a separate composite build

One downside of the above approach is that it requires you to modify an existing build, rendering it less
useful as a standalone build. One way to avoid this is to define a separate composite build, whose only
purpose is to combine otherwise separate builds.
Example 10.3. Declaring a separ ate composite

settings.gradle

r oot Proj ect . nane=" adhoc'

includeBuild '../ny-app'
includeBuild . ./my-utils'

In this scenario, the 'main’ build that is executed is the composite, and it doesn't define any useful tasks to
execute itself. In order to execute the 'run' task in the 'my-app' build, the composite build must define a
delegating task.

Page 65 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeBuild(java.lang.Object)

Example 10.4. Depending on task from included build
buil d. gradl e

task run {
dependsOn gradl e. i ncl udedBui I d(' my-app').task(' :run")

}

More details tasks that depend on included build tasks below.

10.2.4. Restrictions on included builds

Most builds can be included into a composite, however there are some limitations.
Every included build:

®* must haveasettings. gradl e file

* must not itself be a composite build.

®* must not havear oot Pr oj ect . nane the same as another included build.

* must not havear oot Pr oj ect . nane the same as atop-level project of the composite build.

®* must not havear oot Pr oj ect . nane the same as the composite build r oot Pr oj ect . nane.

10.3. Declaring the dependencies substituted by
an included build

By default, Gradle will configure each included build in order to determine the dependenciesit can provide.
The algorithm for doing this is very simple: Gradle will inspect the group and name for the projects in the
included build, and substitute project dependencies for any external dependency matching ${ pr oj ect . gr oup}

There are cases when the default substitutions determined by Gradle are not sufficient, or they are not
correct for a particular composite. For these cases it is possible to explicitly declare the substitutions for an
included build. Take for example a single-project build ‘'unpublished’, that produces a java utility library but
does not declare a value for the group attribute:

Example 10.5. Build that does not declare group attribute

bui |l d. gradl e
apply plugin: 'java'

When this build is included in a composite, it will attempt to substitute for the dependency module
"undefined:unpublished" ("undefined" being the default value for proj ect. gr oup, and 'unpublished'
being the root project name). Clearly this isn't going to be very useful in a composite build. To use the
unpublished library unmodified in a composite build, the composing build can explicitly declare the
substitutions that it provides:

Page 66 of 605

Example 10.6. Declaring the substitutionsfor an included build
settings.gradle

root Proj ect. nane = '

includeBui l d('../anonynmous-|ibrary"') {

dependencySubstitution {
substitute nodul e(' org. sanpl e: nunber-utils") with project(':")

}

With this configuration, the "my-app" composite build will substitute any dependency on or g. sanpl e: nunber

with a dependency on the root project of "unpublished".

10.3.1. Cases where included build substitutions must be declared

Many builds that use the upl oadAr chi ves task to publish artifacts will function automatically as an
included build, without declared substitutions. Here are some common cases where declared substitutions
arerequired:

* Whenthear chi vesBaseNane property is used to set the name of the published artifact.

® When aconfiguration other than def aul t ispublished: this usually means atask other than upl oadAr chi \

isused.

* Whenthe MavenPom addFi | t er () isused to publish artifacts that don't match the project name.

* When the maven- publ i sh or i vy- publ i sh plugins are used for publishing, and the publication
coordinates don't match ${ pr oj ect . gr oup}: ${ pr oj ect . nane}.

10.3.2. Cases where composite build substitutions won't work

Some builds won't function correctly when included in a composite, even when dependency substitutions are
explicitly declared. This limitation is due to the fact that a project dependency that is substituted will aways
point to the def aul t configuration of the target project. Any time that the artifacts and dependencies
specified for the default configuration of a project don't match what is actually published to a repository,
then the composite build may exhibit different behaviour.

Here are some cases where the publish module metadata may be different from the project default
configuration:

* When aconfiguration other than def aul t is published.
* Whenthemaven- publ i sh ori vy- publ i sh pluginsare used.
* Whenthe POMor i vy. xnl fileistweaked as part of publication.

Builds using these features function incorrectly when included in a composite build. We plan to improve this
in the future.

Page 67 of 605

10.4. Depending on tasks in an included build

While included builds are isolated from one another and cannot declare direct dependencies, a composite
build is able to declare task dependencies on it's included builds. The included builds are accessed using

Gradl e. get I ncl udedBui | ds() or Gradl e. i ncl udedBui | d(j ava.l ang. String), and a
task referenceis obtained viathe | ncl udedBui | d. t ask(j ava. | ang. St ri ng) method.

Using these APIs, it is possible to declare a dependency on atask in a particular included build, or tasks with
acertain path in all or some of the included builds.

Example 10.7. Depending on a single task from an included build

bui | d. gradl e

task run {
dependsOn gradl e. i ncl udedBui I d(' my-app').task(' :run")

}

Example 10.8. Depending on a taskswith path in all included builds
bui |l d. gradl e

task publishDeps {
dependsOn gradl e. i ncl udedBui | ds*. task("' : upl oadAr chi ves')

}

10.5. Current limitations and future plans for
composite builds

We think composite builds are pretty useful already. However, there are some things that don't yet work the
way we'd like, and other improvements that we think will make things work even better.

Limitations of the current implementation include:

* No support for included builds that have publications that don't mirror the project default configuration.
See Section 10.3.2, “ Cases where composite build substitutions won't work”.

® No native support for composite builds in IntelliJ IDEA or Eclipse Buildship. Generating IDEA
metadatawith gr adl e i dea issupported.

® Native builds are not supported. (Binary dependencies are not yet supported for native builds).

Improvements we have planned for upcoming releases include:

® Better detection of dependency substitution, for build that publish with custom coordinates, builds that
produce multiple components, etc. Thiswill reduce the cases where dependency substitution needs to be
explicitly declared for an included build.

® The ability to target a task or tasks in an included build directly from the command line. We are
currently exploring syntax options for allowing this functionality, which will remove many cases where
adelegating task is required in the composite.

Page 68 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuilds
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:includedBuild(java.lang.String)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.initialization.IncludedBuild.html#org.gradle.api.initialization.IncludedBuild:task(java.lang.String)

Execution of included builds in parallel.

Detection of changes to included builds when running with continuous build (- t).
Making the implicit bui | dSr ¢ project an included build.

Supporting composite-of-composite builds.

Page 69 of 605

11

Using the Gradle Graphical User Interface

In addition to supporting a traditional command line interface, Gradle offers a graphical user interface. This
isastand alone user interface that can be launched with the --gui option.

Example 11.1. Launching the GUI

Note that this command blocks until the Gradle GUI is closed. Under *nix it is probably preferable to run
this as a background task (gradle --gui&)

If you run this from your Gradle project working directory, you should see atree of tasks.

Page 70 of 605

Figure1l.1. GUI Task Tree

Gradle

Task Tree | Favaorites || Command Line || Seh..lp|

[Refresh] [Execute | [Filter] [+] Show Description

=-multiproject ~
[+-api 1
--ser‘-riu:es

=}-shared

~huild Builds and tests this project

----- uilds and tests this project and all projects that depend on it

-huildMeeded Builds and tests this project and all projects it depends on

~gean Deletes the build directory.

~-compile Compiles the main Java source,

~-compileTest Compiles the test Java source. [\}5

~dists Builds all Jar, War, Zip, and Tar archives

-edipse Generates an Eclipse .project and .dasspath file.

~edipseClean Deletes the Edipse .project and .classpath files.

—edipseCp Generates an Edipse . dasspath file,

-eripseProject Generates an Edipse .project file,

-edipseWtpModule Generates the Edipse Wip files,

Execute 'shared:buildDependents' X

Completed successfully at 3:17:05 PM

>

:3ervices :webservice:processREesocurces
:gervices :webservice:jar SEIEEED
api-uploedbDefaultInternal

gervices iwebservice:war

zervices :webservice:libks

services :webservice:dists
gervices:webservice:compileTest T
gervices :webservice:processTestResocurces
zervices :webservice:test

< | ¥

(%

It is preferable to run this command from your Gradle project directory so that the settings of the Ul will be
stored in your project directory. However, you can run it then change the working directory via the Setup tab
inthe Ul.

The Ul displays 4 tabs along the top and an output window a ong the bottom.

11.1. Task Tree

The Task Tree shows a hierarchical display of al projects and their tasks. Double clicking atask executesit.

There is aso afilter so that uncommon tasks can be hidden. Y ou can toggle the filter via the Filter button.
Editing the filter allows you to configure which tasks and projects are shown. Hidden tasks show up in red.
Note: newly created tasks will show up by default (versus being hidden by default).

The Task Tree context menu provides the following options:

Page 71 of 605

® Execute ignoring dependencies. This does not require dependent projects to be rebuilt (same as the -a
option).

® Add tasksto the favorites (see Favorites tab)

® Hidethe selected tasks. This adds them to the filter.

® Edit the build.gradle file. Note: this requires Java 1.6 or higher and requires that you have .gradle files
associated in your OS.

11.2. Favorites

The Favorites tab is a good place to store commonly-executed commands. These can be complex commands
(anything that's legal to Gradle) and you can provide them with a display name. This is useful for creating,
say, a custom build command that explicitly skips tests, documentation, and samples that you could call
“fast build”.

Y ou can reorder favorites to your liking and even export them to disk so they can imported by others. If you
edit them, you are given options to “Always Show Live Output”. This only appliesif you have “Only Show
Output When Errors Occur”. This override always forces the output to be shown.

11.3. Command Line

The Command Line tab is where you can execute a single Gradle command directly. Just enter whatever
you would normally enter after 'gradle’ on the command line. This also provides a place to try out
commands before adding them to favorites.

11.4. Setup

The Setup tab allows configuration of some general settings.

Page 72 of 605

Figure11.2. GUI Setup

Gradle

| Task Tree || Favorites | Command Line| Setup |

Current Directory
|C:‘l.deuelnpment‘l,samples‘l,jauahultipmject | [Browse. ..

Log Level
| Debug b

Stack Trace Qutput
(¥} Exceptions Only
(") Standard Stack Trace
(" Full Stack Trace

] only Show Output When Errars Occur

[] Use Custom Gradle Executor

Execute 'shared:buildDependents' X

Completed successfully at 3:23:29 PM

gervices :webservice:test

>

gervices:webservicezbuild
:shared:buildDependents

BUILD SUCCESSFUL

Totel time: ©.453 secs

Ed

Completed Successfully
< >

¢ Current Directory
Defines the root directory of your Gradle project (typically where build.gradle is located).

® Stack Trace Output
This determines how much information to write out in stack traces when errors occur. Note: if you
specify a stack trace level on either the Command Line or Favorites tab, it will override this stack trace
level.

¢ Only Show Output When Errors Occur
Enabling this option hides any output when atask is executed unless the build fails.

® Use Custom Gradle Executor - Advanced feature
This provides you with an alternate way to launch Gradle commands. This is useful if your project
requires some extra setup that is done inside another batch file or shell script (such as specifying an init
script).

Page 73 of 605

12

The Build Environment

12.1. Configuring the build environment via
gradle.properties

Gradle provides several options that make it easy to configure the Java process that will be used to execute
your build. While it's possible to configure these in your local environment via GRADLE_OPTS or
JAVA_OPTS, certain settings like VM memory settings, Java home, daemon on/off can be more useful if

they can be versioned with the project in your VCS so that the entire team can work with a consistent
environment. Setting up a consistent environment for your build is as simple as placing these settings into a gr adl
file. The configuration is applied in following order (if an option is configured in multiple locations the last
onewins):

* fromgradl e. properti es inproject build dir.
® fromgradl e. propertiesingradl e user hone.
* from system properties, e.g. when - Dsone. pr operty isset on the command line.

When setting these properties you should keep in mind that Gradle requires a Java JDK or JRE of version 7
or higher to run.

The following properties can be used to configure the Gradle build environment:

org. gradl e. daenon
When set to t r ue the Gradle daemon is used to run the build. For local developer builds this is our
favorite property. The developer environment is optimized for speed and feedback so we nearly always
run Gradle jobs with the daemon. We don't run ClI builds with the daemon (i.e. along running process)
asthe Cl environment is optimized for consistency and reliability.

org.gradl e.java. hone
Specifies the Java home for the Gradle build process. The value can be set to either ajdk orjre
location, however, depending on what your build does, j dk is safer. A reasonable default is used if the
setting is unspecified.

org. gradl e.jvmargs
Specifies the jvmargs used for the daemon process. The setting is particularly useful for tweaking
memory settings. At the moment the default settings are pretty generous with regards to memory.

org. gradl e. confi gur eondenand
Enables new incubating mode that makes Gradle selective when configuring projects. Only relevant
projects are configured which results in faster builds for large multi-projects. See the section called

Page 74 of 605

“Configuration on demand”.

org. gradl e. paral |l el
When configured, Gradle will run in incubating parallel mode.

org. gradl e. wor kers. max
When configured, Gradle will use a maximum of the given number of workers. See - - nax- wor ker s
for details.

org. gradl e. debug
When set to true, Gradle will run the build with remote debugging enabled, listening on port 5005. Note
that thisisthe equivalent of adding - agent | i b: j dwp=t ransport =dt _socket, server =y, suspen
to the VM command line and will suspend the virtual machine until a debugger is attached.

org. gradl e. daenon. performance. enabl e-nmonitori ng
When set to false, Gradle will not monitor the memory usage of running daemons. See Section 6.5.5,
“What can go wrong with Daemon?”.

12.1.1. Forked Java processes

Many settings (like the Java version and maximum heap size) can only be specified when launching a new
JVM for the build process. This means that Gradle must launch a separate VM process to execute the build
after parsing the various gr adl e. properti es files. When running with the daemon, a VM with the
correct parameters is started once and reused for each daemon build execution. When Gradle is executed
without the daemon, then a new JVM must be launched for every build execution, unless the VM launched
by the Gradle start script happens to have the same parameters.

This launching of an extra JVM on every build execution is quite expensive, which iswhy if you are setting
either or g. gradl e. j ava. hore or or g. gr adl e. j vimar gs we highly recommend that you use the
Gradle Daemon. See Chapter 6, The Gradle Daemon for more details.

12.2. Gradle properties and system properties

Gradle offers a variety of ways to add properties to your build. With the - D command line option you can
pass a system property to the VM which runs Gradle. The - D option of the gradle command has the same
effect asthe - D option of the java command.

Y ou can also add properties to your project objects using propertiesfiles. You can placeagr adl e. propertie
file in the Gradle user home directory (defined by the “GRADLE_USER HOVE" environment variable,
which if not set defaults to USER_HOME/ . gr adl e) or in your project directory. For multi-project builds

you can placegr adl e. properti es filesin any subproject directory. The propertiessetinagr adl e. pr ope!
file can be accessed via the project object. The properties file in the user's home directory has precedence

over property filesin the project directories.

Y ou can also add properties directly to your project object viathe - P command line option.

Gradle can also set project properties when it sees specially-named system properties or environment
variables. This feature is very useful when you don't have admin rights to a continuous integration server

Page 75 of 605

and you need to set property values that should not be easily visible, typically for security reasons. In that
situation, you can't use the - P option, and you can't change the system-level configuration files. The correct
strategy is to change the configuration of your continuous integration build job, adding an environment
variable setting that matches an expected pattern. This won't be visible to normal users on the system. [4]

If the environment variable name looks like ORG_GRADLE _PROJECT_pr op=soneval ue, then Gradle
will set a pr op property on your project object, with the value of soneval ue. Gradle also supports this
for system properties, but with adifferent naming pattern, which lookslike or g. gr adl e. pr oj ect. prop

You can also set system propertiesin the gr adl e. properti es file. If aproperty namein such afile has
the prefix “syst enPr op. 7, like “syst enPr op. pr opNane”, then the property and its value will be set
as a system property, without the prefix. In a multi project build, “syst enPr op. ” properties set in any
project except the root will be ignored. That is, only the root project's gr adl e. properti es filewill be
checked for properties that begin with the “syst enPr op. ” prefix.

Example 12.1. Setting propertieswith a gradle.propertiesfile

gradl e. properties

gr adl eProperti esProp=gradl ePropertiesVal ue
sysProp=shoul dBeOver Wi tt enBySysProp

envPr oj ect Prop=shoul dBeOver Wi ttenByEnvProp
syst enPr op. syst ensyst enVal ue

bui | d. gradl e

task printProps {
doLast {
printl n commandLi nePr oj ect Prop
println gradl ePropertiesProp

println systenProjectProp
println envProject Prop
println System properties['systemn]

Output of gr adl e -qg - PcomandLi nePr oj ect Prop=comandLi nePr oj ect PropVal ue -Dorg. ¢

> gradl e -q - PcommandLi nePr oj ect Prop=conmandLi nePr oj ect PropVal ue - Dor g. gradl e. proj ec
commandLi nePr oj ect PropVal ue

gr adl eProperti esVal ue

syst enPropertyVal ue

envPropertyVal ue

syst enVal ue

12.2.1. Checking for project properties

Y ou can access a project property in your build script simply by using its name as you would use a variable.

If this property does not exist, an exception will be thrown and the build will fail. If your build script relies
on optional properties the user might set, perhapsin agr adl e. pr operti es file, you need to check for
existence before you access them. Y ou can do this by using the method hasPr opert y(' propertyName')
whichreturnst r ue or f al se.

Page 76 of 605

12.3. Accessing the web via a proxy

Configuring an HTTP or HTTPS proxy (for downloading dependencies, for example) is done via standard
JVM system properties. These properties can be set directly in the build script; for example, setting the
HTTP proxy host would be done with Syst em set Property(' http. proxyHost', 'ww. sonehost.
. Alternatively, the properties can be specified in a gradle.properties file, either in the build's root directory

or in the Gradle home directory.

Example 12.2. Configuring an HTTP proxy

gradl e. properties

syst enProp. htt p. pr oxyHost =www. sonehost . or g
syst enProp. htt p. pr oxyPort =8080

syst enProp. htt p. proxyUser =userid
syst enProp. htt p. pr oxyPasswor d=passwor d
syst enPr op. htt p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

There are separate settings for HTTPS.
Example 12.3. Configuring an HTTPS proxy

gradl e. properties

syst enPr op. htt ps. pr oxyHost =www. sonehost . org
syst enPr op. htt ps. pr oxyPort =8080

syst enProp. htt ps. proxyUser =useri d
syst enPr op. htt ps. pr oxyPasswor d=passwor d
syst enPr op. htt p. nonPr oxyHost s=*. nonpr oxyr epos. conj | ocal host

We could not find a good overview for al possible proxy settings. One place to look are the constantsin a
file from the Ant project. Here's a link to the Subversion view. The other is a Networking Properties page
from the JDK docs. If anyone knows of a better overview, please let us know viathe mailing list.

12.3.1. NTLM Authentication

If your proxy requires NTLM authentication, you may need to provide the authentication domain as well as
the username and password. There are 2 ways that you can provide the domain for authenticating to a
NTLM proxy:

® Setthehtt p. proxyUser system property to avaluelike dormai n/ user nane.
® Provide the authentication domain viathe ht t p. aut h. nt | m domai n system property.

[4] Jenkins, Teamcity, or Bamboo are some Cl servers which offer this functionality.

Page 77 of 605

http://svn.apache.org/viewvc/ant/core/trunk/src/main/org/apache/tools/ant/util/ProxySetup.java?view=markup&pathrev=556977
http://download.oracle.com/javase/6/docs/technotes/guides/net/properties.html

13

Troubleshooting

This chapter is currently awork in progress.

When using Gradle (or any software package), you can run into problems. Y ou may not understand how to
use a particular feature, or you may encounter a defect. Or, you may have a general question about Gradle.

This chapter gives some advice for troubleshooting problems and explains how to get help with your
problems.

13.1. Working through problems

If you are encountering problems, one of the first things to try is using the very latest release of Gradle. New
versions of Gradle are released frequently with bug fixes and new features. The problem you are having may
have been fixed in anew release.

If you are using the Gradle Daemon, try temporarily disabling the daemon (you can pass the command line
switch - - no- daenon). More information about troubleshooting the daemon process is located in
Chapter 6, The Gradle Daemon.

13.2. Getting help

The place to go for help with Gradle is http://forums.gradle.org. The Gradle Forums is the place where you
can report problems and ask questions of the Gradle developers and other community members.

If something's not working for you, posting a question or problem report to the forums is the fastest way to
get help. It's also the place to post improvement suggestions or new ideas. The development team frequently
posts news items and announces releases via the forum, making it a great way to stay up to date with the
latest Gradle developments.

Page 78 of 605

http://forums.gradle.org

14

Embedding Gradle using the Tooling API

14.1. Introduction to the Tooling API

Gradle provides a programmatic API called the Tooling API, which you can use for embedding Gradle into
your own software. This API allows you to execute and monitor builds and to query Gradle about the details
of abuild. The main audience for this APl isIDE, Cl server, other Ul authors; however, the APl is open for
anyone who needs to embed Gradle in their application.

* Gradle TestKit usesthe Tooling API for functional testing of your Gradle plugins.
® Eclipse Buildship usesthe Tooling API for importing your Gradle project and running tasks.
® IntelliJIDEA usesthe Tooling API for importing your Gradle project and running tasks.

14.2. Tooling APl Features

A fundamental characteristic of the Tooling API isthat it operatesin aversion independent way. This means
that you can use the same API to work with builds that use different versions of Gradle, including versions
that are newer or older than the version of the Tooling API that you are using. The Tooling APl is Gradle
wrapper aware and, by default, uses the same Gradle version as that used by the wrapper-powered build.

Some features that the Tooling API provides:

® Query the details of abuild, including the project hierarchy and the project dependencies, external
dependencies (including source and Javadoc jars), source directories and tasks of each project.

® Execute abuild and listen to stdout and stderr logging and progress messages (€.g. the messages shown
in the 'status bar' when you run on the command line).

® Execute a specific test class or test method.

® Receiveinteresting events as a build executes, such as project configuration, task execution or test
execution.

® Cancel abuild that is running.

® Combine multiple separate Gradle builds into a single composite build.

® The Tooling API can download and install the appropriate Gradle version, similar to the wrapper.

® Theimplementation islightweight, with only a small number of dependencies. It is also awell-behaved
library, and makes no assumptions about your classloader structure or logging configuration. This makes
the API easy to embed in your application.

Page 79 of 605

http://projects.eclipse.org/projects/tools.buildship
https://www.jetbrains.com/idea/

14.3. Tooling API and the Gradle Build Daemon

The Tooling APl always uses the Gradle daemon. This means that subsequent calls to the Tooling API, be it
model building requests or task executing requests will be executed in the same long-living process.
Chapter 6, The Gradle Daemon contains more details about the daemon, specifically information on
situations when new daemons are forked.

14.4. Quickstart

Asthe Tooling API is an interface for devel opers, the Javadoc is the main documentation for it. We provide
several samples that live in sanpl es/ t ool i ngApi in your Gradle distribution. These samples specify
all of the required dependencies for the Tooling APl with examples for querying information from Gradle
builds and executing tasks from the Tooling API.

To usethe Tooling API, add the following repository and dependency declarations to your build script:

Example 14.1. Using the tooling API
buil d. gradl e

repositories {
maven { url 'https://repo.gradle.org/gradle/libs-rel eases' }

}

dependenci es {

conpi l e "org. gradl e: gradl e-tool ing-api:${tool i ngApi Versi on}"
/'l The tooling APl need an SLF4J inpl ementation available at runtine, replad
runtime 'org.slf4j:slf4j-sinple:1.7.10

The main entry point to the Tooling API isthe G- adl eConnect or . You can navigate from there to find
code samples and explore the available Tooling API models. You can use
Gr adl eConnect or. connect () to create a Proj ect Connecti on. A Proj ect Connecti on
connects to a single Gradle project. Using the connection you can execute tasks, tests and retrieve models
relative to this project.

14.5. Gradle version and Java version
compatibility
The current version of the Tooling API supports running builds using Gradle versions 1.2 and later.

You should note that not all features of the Tooling APl are available for all versions of Gradle. For
example, build cancellation is only available when a build uses Gradle 2.1 and later. Refer to the
documentation for each class and method for more details.

The current Gradle version can be used from Tooling API versions 2.0 or later.

Page 80 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/tooling/GradleConnector.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/tooling/GradleConnector.html#connect()
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/tooling/GradleConnector.html#connect()
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/tooling/ProjectConnection.html

The Tooling API requires Java 7 or later. The Gradle version used by builds may have additional Java
version requirements.

Page 81 of 605

Part II1. Writing Gradle
build scripts

15

Build Script Basics

15.1. Projects and tasks

Everything in Gradle sits on top of two basic concepts. projects and tasks.

Every Gradle build is made up of one or more projects. What a project represents depends on what it is that
you are doing with Gradle. For example, a project might represent a library JAR or a web application. It
might represent a distribution ZIP assembled from the JARs produced by other projects. A project does not
necessarily represent a thing to be built. It might represent a thing to be done, such as deploying your
application to staging or production environments. Don't worry if this seems a little vague for now. Gradle's
build-by-convention support adds a more concrete definition for what a project is.

Each project is made up of one or more tasks. A task represents some atomic piece of work which a build
performs. This might be compiling some classes, creating a JAR, generating Javadoc, or publishing some
archivesto arepository.

For now, we will look at defining some simple tasks in a build with one project. Later chapters will look at
working with multiple projects and more about working with projects and tasks.

15.2. Hello world

You run a Gradle build using the gradle command. The gradle command looks for afile called bui | d. gr adl e
in the current directory. 151 We call thisbui | d. gr adl e filea build script, although strictly speaking it is
abuild configuration script, aswe will see later. The build script defines a project and its tasks.

To try this out, create the following build script named bui | d. gr adl e.

Example 15.1. Your first build script
buil d. gradl e

task hello {
doLast {
println 'Hello world!

}

In a command-line shell, move to the containing directory and execute the build script with gradl e -q hel | o

Page 83 of 605

Example 15.2. Execution of a build script

Outputof gradl e -q hello What does - g do?
> gradle -q hello Most of the examples in this
Hel l o worl d!

user guide are run with the - q
command-line option. This
suppresses Gradle's log
messages, so that only the
output of the tasks is shown.
This keeps the example output
in this user guide alittle clearer.
You don't need to use this

What's going on here? This build script defines a single task,

caled hel | 0, and adds an actionto it. Whenyourun gr adl e hel | o
, Gradle executes the hel | o task, which in turn executes the
action you've provided. The action is simply a closure
containing some Groovy code to execute.

If you think this looks similar to Ant's targets, you would be option if you don't want to. See
right. Gradle tasks are the equivalent to Ant targets, but as you Chapter 23, Logging for more
will see, they are much more powerful. We have used a different details about the command-line
terminology than Ant as we think the word task is more options which affect Gradl€'s
expressive than the word target. Unfortunately this introduces a output.

terminology clash with Ant, as Ant calls its commands, such asj avac

or copy, tasks. So when we talk about tasks, we always mean

Gradle tasks, which are the equivalent to Ant's targets. If we talk about Ant tasks (Ant commands), we
explicitly say Ant task.

15.3. A shortcut task definition

This functionality is deprecated and will be removed in Gradle 5.0 without replacement. Use the
methods Task. doFirst(org. gradl e. api.Action) and

Task. doLast (org. gradl e. api . Acti on) to define an action instead, as demonstrated by the
rest of the examplesin this chapter.

There is a shorthand way to define atask like our hel | o task above, which is more concise.

Example 15.3. A task definition shortcut
bui |l d. gradl e

task hello << {
println "Hello world!

}

Again, this defines atask called hel | o with asingle closure to execute. The << operator is simply an alias
for doLast .

15.4. Build scripts are code

Gradl€e's build scripts give you the full power of Groovy. As an appetizer, have alook at this:

Page 84 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doFirst(org.gradle.api.Action)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)

Example 15.4. Using Groovy in Gradle'stasks

bui | d. gradl e

task upper {
doLast {
String soneString =

println "Original:

println "Upper case:

Output of gr adl e -qg upper
> gradl e -q upper

Original: my_nAnE
Upper case: MY_NAME

or

"'mY_nAntE'
' + someString

' + someString.toUpper Case()

Example 15.5. Using Groovy in Gradle'stasks

bui | d. gradl e

task count {
doLast {

4.tinmes { print "$it

}

Output of gr adl e -qg count

> gradle -qg count
0123

15.5. Task dependencies

Asyou probably have guessed, you can declare tasks that depend on other tasks.

Page 85 of 605

Example 15.6. Declaration of task that dependson other task

buil d. gradl e

task hello {
doLast {
println 'Hello world!

}

}
task intro(dependsOn: hello) {

doLast {
println "I'm G adl e"

}

Outputof gradle -q intro

> gradle -q intro
Hel I o world!
I'"'m G adle

To add a dependency, the corresponding task does not need to exist.

Example 15.7. Lazy dependsOn - the other task does not exist (yet)
bui |l d. gradl e

task taskX(dependsOn: 'taskY') {
doLast {
println 'taskX
}
}

task taskY {
doLast {
println 'taskY

}

Output of gradl e -qg taskX
> gradle -q taskX

taskY
taskX

The dependency of t askX to t askY is declared before t askY is defined. This is very important for
multi-project builds. Task dependencies are discussed in more detail in Section 18.4, “ Adding dependencies
to atask”.

Please notice that you can't use shortcut notation (see Section 15.8, “ Shortcut notations’) when referring to a
task that is not yet defined.

15.6. Dynamic tasks

The power of Groovy can be used for more than defining what a task does. For example, you can also use it
to dynamically create tasks.

Page 86 of 605

Example 15.8. Dynamic creation of atask
buil d. gradl e

4.tinmes { counter ->
task "task$counter" {
doLast {

println "I'mtask nunber $counter”

Output of gradl e -qg taskl

> gradle -q taskl
I'"'mtask nunmber 1

15.7. Manipulating existing tasks

Once tasks are created they can be accessed viaan API. For instance, you could use this to dynamically add
dependencies to atask, at runtime. Ant doesn't allow anything like this.

Example 15.9. Accessing atask via API - adding a dependency
bui |l d. gradl e

4.tinmes { counter ->
task "task$counter" {
doLast {
println "I'mtask nunber $counter"
}
}

}
t ask0. dependsOn task2, task3

Output of gradl e -q task0
> gradle -q taskO
I'"'mtask nunber 2

I'"'mtask nunber 3
I'mtask nunber O

Or you can add behavior to an existing task.

Page 87 of 605

Example 15.10. Accessing a task via API - adding behaviour
buil d. gradl e

task hello {
doLast {
println 'Hello Earth'
}

}
hel | 0. doFirst {

println 'Hello Venus'

}

hel | 0. doLast {
println 'Hello Mars'
}
hell o {
doLast {
println 'Hello Jupiter'

}

Outputof gradl e -q hello

> gradle -q hello
Hel | o Venus

Hell o Earth

Hell o Mars

Hel l o Jupiter

The callsdoFi r st and doLast can be executed multiple times. They add an action to the beginning or
the end of the task's actions list. When the task executes, the actions in the action list are executed in order.

15.8. Shortcut notations

There is a convenient notation for accessing an existing task. Each task is available as a property of the build

script:

Example 15.11. Accessing task as a property of the build script

bui |l d. gradl e

task hello {
doLast {
println 'Hello world!"
}

}
hel | 0. doLast {

println "G eetings fromthe $hell o. nane task."

}

Output of gradl e -q hell o

> gradle -q hello
Hel | o worl d!
Greetings fromthe hello task.

Page 88 of 605

This enables very readable code, especially when using the tasks provided by the plugins, like the conpi | e
task.

15.9. Extratask properties

Y ou can add your own properties to atask. To add a property named my Pr operty, set ext . nyProperty
to aninitial value. From that point on, the property can be read and set like a predefined task property.
Example 15.12. Adding extra propertiesto a task

bui |l d. gradl e

task nyTask {
ext. myProperty = "nyVal ue"
}

task printTaskProperties {

doLast {
println nmyTask. myProperty
}

Output of gr adl e -qg print TaskProperties

> gradle -q printTaskProperties
nmyVal ue

Extra properties aren't limited to tasks. Y ou can read more about them in Section 17.4.2, “ Extra properties’.

15.10. Using Ant Tasks

Ant tasks are first-class citizens in Gradle. Gradle provides excellent integration for Ant tasks by simply
relying on Groovy. Groovy is shipped with the fantastic Ant Bui | der . Using Ant tasks from Gradle is as
convenient and more powerful than using Ant tasks from abui | d. xm file. From the example below, you
can learn how to execute Ant tasks and how to access Ant properties:

Page 89 of 605

Example 15.13. Using AntBuilder to execute ant.loadfile tar get

bui | d. gradl e

task loadfile {
doLast {
def files = file('../antLoadfil|leResources').listFiles().sort()
files.each { File file ->
if (file.isFile()) {
ant .l oadfile(srcFile: file, property: file.nane)

printlin " *** $file. name ***"
println "${ant.properties[file.nanme]}"

Output of gradl e -qg | oadfile

> gradle -q loadfile

*** agile.mani festo.txt ***

I ndividual s and interactions over processes and tools
Wor ki ng software over conprehensive docunentation

Custoner col | aboration over contract negotiation

Respondi ng to change over followi ng a plan

*** gradl e. mani festo. txt ***

Make the inpossible possible, nake the possible easy and nake the easy el egant.
(inspired by Mdshe Fel denkrai s)

There is lots more you can do with Ant in your build scripts. Y ou can find out more in Chapter 20, Using
Ant from Gradle.

15.11. Using methods

Gradle scales in how you can organize your build logic. Thefirst level of organizing your build logic for the
example above, is extracting a method.

Page 90 of 605

Example 15.14. Using methods to or ganize your build logic
buil d. gradl e

task checksum {
doLast {
fileList('../antLoadfil|leResources').each { File file ->
ant.checksun(file: file, property: "cs $file.nane")
println "$file. name Checksum ${ant.properties["cs_$file.name"]}"

task loadfile {
doLast {
fileList('../antlLoadfi|eResources').each { File file ->
ant.loadfile(srcFile: file, property: file.nane)
printin "I'mfond of $file.nane"

File[] fileList(String dir) {
file(dir).listFiles({file -> file.isFile() } as FileFilter).sort()

}

Output of gradl e -qg | oadfile
> gradle -q loadfile

I'"'mfond of agile.manifesto.txt
I"'mfond of gradle. manifesto.txt

Later you will see that such methods can be shared among subprojects in multi-project builds. If your build
logic becomes more complex, Gradle offers you other very convenient ways to organize it. We have devoted
awhole chapter to this. See Chapter 42, Organizing Build Logic.

15.12. Default tasks

Gradle allows you to define one or more default tasks that are executed if no other tasks are specified.

Page 91 of 605

Example 15.15. Defining a default task
buil d. gradl e

def aul t Tasks 'clean', 'run'

task clean {
doLast {
println 'Default C eaning!'
}
}

task run {
doLast {

println 'Default Running!'

}
}

task other {
doLast {
println "I'mnot a default task!"

}

Output of gradl e -¢

> gradle -q
Def aul t d eani ng!
Def aul t Runni ng!

Thisis equivalent to running gr adl e cl ean run. In amulti-project build every subproject can have its
own specific default tasks. If a subproject does not specify default tasks, the default tasks of the parent
project are used (if defined).

15.13. Configure by DAG

As we later describe in full detail (see Chapter 21, The Build Lifecycle), Gradle has a configuration phase
and an execution phase. After the configuration phase, Gradle knows all tasks that should be executed.
Gradle offers you a hook to make use of this information. A use-case for this would be to check if the
release task is among the tasks to be executed. Depending on this, you can assign different values to some
variables.

In the following example, execution of the di st ri buti on and r el ease tasks resultsin different value
of thever si on variable.

Page 92 of 605

Example 15.16. Different outcomes of build depending on chosen tasks
buil d. gradl e

task distribution {
doLast {

println "We build the zip with versi on=3$versi on"

}
}

task rel ease(dependsOn: 'distribution') {
doLast {
println 'W rel ease now
}
}

gradl e. t askGr aph. whenReady {taskG aph ->
i f (taskG aph. hasTask(rel ease)) ({
version = '1.0'
} else {
version = ' 1. 0- SNAPSHOT'

}

Output of gradl e -qg di stribution

> gradle -q distribution
We build the zip with version=1. 0- SNAPSHOT

Output of gradl e -qg rel ease

> gradle -q rel ease
We build the zip with version=1.0
W rel ease now

The important thing is that whenReady affects the release task before the release task is executed. This
works even when the release task is not the primary task (i.e., the task passed to the gradle command).

15.14. Where to next?

In this chapter, we have had afirst look at tasks. But thisis not the end of the story for tasks. If you want to

jump into more of the details, have alook at Chapter 18, More about Tasks.

Otherwise, continue on to the tutorials in Chapter 45, Java Quickstart and Chapter 7, Dependency

Management Basics.

[5] There are command line switches to change this behavior. See Appendix D, Gradle Command Line)

Page 93 of 605

16

Build I'nit Plugin

The Build Init plugin is currently incubating. Please be aware that the DSL and other configuration
may change in later Gradle versions.

The Gradle Build Init plugin can be used to bootstrap the process of creating a new Gradle build. It supports
creating brand new projects of different types as well as converting existing builds (e.g. An Apache Maven
build) to be Gradle builds.

Gradle plugins typically need to be applied to a project before they can be used (see Section 26.3, “Using
plugins’). The Build Init plugin is an automatically applied plugin, which means you do not need to apply it
explicitly. To use the plugin, simply execute the task named i ni t where you would like to create the
Gradle build. Thereis no need to create a“stub” bui | d. gr adl e filein order to apply the plugin.

It also leverages the wr apper task from the Wrapper plugin (see Chapter 22, Wrapper Plugin), which
means that the Gradle Wrapper will also be installed into the project.

16.1. Tasks

The plugin adds the following tasks to the project:

Table 16.1. Build Init plugin - tasks

Task name Dependson Type Description
init wr apper InitBuild GeneratesaGradle project.
wr apper - W apper Generates Gradle wrapper files.

16.2. What to set up

The i ni t supports different build setup types. The type is specified by supplying a - - t ype argument
value. For example, to create a Javalibrary project simply execute: gradl e init --type java-library

If a--type parameter is not supplied, Gradle will attempt to infer the type from the environment. For
example, it will infer atype value of “ponft if it findsapom xm to convert to a Gradle build.

Page 94 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.buildinit.tasks.InitBuild.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

If the type could not be inferred, the type “basi ¢” will be used.

All build setup types include the setup of the Gradle Wrapper.

16.3. Build init types

Asthis plugin is currently incubating, only afew build init types are currently supported. More types
will be added in future Gradle releases.

16.3.1. “pont (Maven conversion)

The“poni’ type can be used to convert an Apache Maven build to a Gradle build. This works by converting
the POM to one or more Gradle files. It is only able to be used if thereis avalid “pom xml ” file in the
directory that the i ni t task isinvoked in or, if invoked viathe "- p" commandline option, in the specified
project directory. This“poni type will be automatically inferred if such afile exists.

The Maven conversion implementation was inspired by the maven2gradle tool that was originally developed
by Gradle community members.

The conversion process has the following features:

® Useseffective POM and effective settings (support for POM inheritance, dependency management,
properties)

® Supports both single module and multimodul e projects

® Supports custom module names (that differ from directory names)

® Generates general metadata - id, description and version

* Applies maven, java and war plugins (as needed)

® Supports packaging war projects asjarsif needed

® Generates dependencies (both external and inter-modul€)

® Generates download repositories (inc. local Maven repository)

® Adjusts Java compiler settings

® Supports packaging of sources and tests

® Supports TestNG runner

® Generates global exclusions from Maven enforcer plugin settings

16.3.2. %] ava-library”

The“j ava-1i brary” buildinit typeisnot inferable. It must be explicitly specified.
It has the following features:

® Usesthe“j ava” plugin

® Usesthe“j cent er ” dependency repository

® UsesJUnit for testing

* Hasdirectoriesin the conventional locations for source code

¢ Contains asample class and unit test, if there are no existing source or test files

Page 95 of 605

https://github.com/jbaruch/maven2gradle
http://junit.org

Alternative test framework can be specified by supplying a - - t est - f r anmewor k argument value. To use
adifferent test framework, execute one of the following commands:

® gradle init --type java-library --test-framework spock: UsesSpock for testing
instead of JUnit

® gradle init --type java-library --test-framework testng: Uses TestNG for
testing instead of JUnit

16.3.3.“scal a-l i brary”

The“scal a- | i brary” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“scal a” plugin

® Usesthe"j cent er ” dependency repository

® UsesScala2.10

® Uses ScalaTest for testing

* Hasdirectoriesin the conventional locations for source code

® Contains a sample scala class and an associated ScalaTest test suite, if there are no existing source or test
files

® Usesthe Zinc Scala compiler by default

16.3.4.“groovy-library”

The“groovy-1i brary” buildinit typeis not inferable. It must be explicitly specified.
It has the following features:

® Usesthe“groovy” plugin

® Usesthe“j cent er” dependency repository

® UsesGroovy 2.x

® Uses Spock testing framework for testing

® Hasdirectoriesin the conventional locations for source code

® Contains a sample Groovy class and an associated Spock specification, if there are no existing source or
test files

16.3.5. “basic”

The“basi c” build init typeisuseful for creating afresh new Gradle project. It creates asample bui | d. gr adl ¢
file, with comments and links to help get started.

Thistype is used when no type was explicitly specified, and no type could be inferred.

Page 96 of 605

http://code.google.com/p/spock/
http://testng.org/doc/index.html
http://www.scalatest.org
http://spockframework.org

17

Writing Build Scripts
This chapter looks at some of the details of writing abuild script.

17.1. The Gradle build language

Gradle provides a domain specific language, or DSL, for describing builds. This build language is based on
Groovy, with some additions to make it easier to describe a build.

A build script can contain any Groovy language element. (6] Gradle assumes that each build script is
encoded using UTF-8.

17.2. The Project API

In the tutorial in Chapter 45, Java Quickstart we used, for example, the appl y() method. Where does this
method come from? We said earlier that the build script defines a project in Gradle. For each project in the
build, Gradle creates an object of type Pr oj ect and associates this Pr oj ect object with the build script.
Asthe build script executes, it configuresthis Pr oj ect object:

®* Any method you call in your build script which is not
defined in the build script, is delegated to the Pr oj ect

Getting help writing

object. : :
) . L - build scripts
® Any property you access in your build script, which is not
defined in the build script, is delegated to the Pr oj ect Don't forget that your build
object. script is simply Groovy code
that drives the Gradle API. And
Let's try this out and try to access the nane property of the the Pr oj ect interface is your
Proj ect object. starting point for accessing

everything in the Gradle API.
So, if you're wondering what
'tags' are available in your build
script, you can start with the
documentation for the
Pr oj ect interface.

Page 97 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html

Example 17.1. Accessing property of the Project object
buil d. gradl e

println name

println project.nane

Output of gr adl e -g check

> gradle -q check
pr oj ect Api
pr oj ect Api

Both pri nt | n statements print out the same property. The first uses auto-delegation to the Pr oj ect
object, for properties not defined in the build script. The other statement uses the pr oj ect property
available to any build script, which returns the associated Pr oj ect object. Only if you define a property or
amethod which has the same name as a member of the Pr oj ect object, would you need to use the pr oj ect

property.

17.2.1. Standard project properties

The Pr oj ect object provides some standard properties, which are available in your build script. The
following table lists afew of the commonly used ones.

Table 17.1. Project Properties

Name Type Default Value

proj ect Pr oj ect ThePr oj ect instance

name String The name of the project directory.

pat h String The absolute path of the project.
description String A description for the project.
projectDir File The directory containing the build script.
bui | dDi r File projectDir/build

group hj ect unspecified

version bj ect unspecified

ant Ant Bui | der ~ An Ant Bui | der instance

17.3. The Script API

When Gradle executes a script, it compiles the script into a class which implements Scr i pt . This means
that all of the properties and methods declared by the Scr i pt interface are available in your script.

Page 98 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/AntBuilder.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Script.html

17.4. Declaring variables

There are two kinds of variables that can be declared in abuild script: local variables and extra properties.

17.4.1. Local variables

Local variables are declared with the def keyword. They are only visible in the scope where they have been
declared. Local variables are a feature of the underlying Groovy language.

Example 17.2. Using local variables
bui |l d. gradl e

def dest = "dest"

task copy(type: Copy) {

from "source"
into dest

17.4.2. Extraproperties

All enhanced objects in Gradle's domain model can hold extra user-defined properties. This includes, but is
not limited to, projects, tasks, and source sets. Extra properties can be added, read and set via the owning
object'sext property. Alternatively, an ext block can be used to add multiple properties at once.

Page 99 of 605

Example 17.3. Using extra properties

bui | d. gradl e
apply plugin: "java"

ext {
springVersion = "3.1. 0. RELEASE"
emai | Notification = "buil d@mster.org"

}

sourceSets.all { ext.purpose = null }

sourceSets {
mai n {
pur pose = "production”
}
test {
purpose = "test"
}
pl ugin {
pur pose = "production”
}
}

task printProperties {
doLast {
println springVersion
println enmail Notification
sourceSets. matching { it.purpose == "production” }.each { printlnit.na

Output of gradl e -qg printProperties

> gradle -q printProperties
3. 1. 0. RELEASE

bui | d@master. org

mai n

pl ugin

In this example, an ext block adds two extra properties to the pr oj ect object. Additionally, a property
named pur pose is added to each source set by setting ext . pur pose tonul | (nul | isapermissible
value). Once the properties have been added, they can be read and set like predefined properties.

By requiring special syntax for adding a property, Gradle can fail fast when an attempt is made to set a
(predefined or extra) property but the property is misspelled or does not exist. Extra properties can be
accessed from anywhere their owning object can be accessed, giving them a wider scope than local
variables. Extra properties on aproject are visible from its subprojects.

For further details on extra properties and their API, see the Ext r aPr oper t i esExt ensi on classin the
API documentation.

Page 100 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

17.5. Configuring arbitrary objects

Y ou can configure arbitrary objects in the following very readable way.

Example 17.4. Configuring arbitrary objects
bui |l d. gradl e

task configure {
doLast {
def pos = configure(new java.text.FieldPosition(10)) {
begi nl ndex = 1
endl ndex = 5

}

println pos. begi nl ndex
println pos. endl ndex

Output of gradl e -g configure
> gradle -q configure

1
5

17.6. Configuring arbitrary objects using an
external script

Y ou can also configure arbitrary objects using an external script.

Page 101 of 605

Example 17.5. Configuring arbitrary objects using a script

bui | d. gradl e

task configure {
doLast {
def pos = new java.text.Fiel dPosition(10)

/1 Apply the script

apply from 'other.gradle', to: pos
println pos. begi nl ndex
println pos. endl ndex

ot her. gradl e

/] Set properties.

begi nl ndex = 1
endl ndex = 5

Output of gradl e -g configure
> gradle -q configure

1
5

17.7. Some Groovy basics

The Groovy language provides plenty of features for creating DSLs, and the Gradle build language takes
advantage of these. Understanding how the build language works will help you when you write your build
script, and in particular, when you start to write custom plugins and tasks.

17.7.1. Groovy JDK
Groovy adds lots of useful methods to the standard Java classes. For example, | t er abl e gets an each
method, which iterates over the elements of the | t er abl e:
Example 17.6. Groovy JDK methods
bui |l d. gradl e

/'l lterable gets an each() nethod

configurations.runtine.each { File f -> printlin f }

Have alook at http://groovy-lang.org/gdk.html for more details.

17.7.2. Property accessors

Groovy automatically converts a property reference into a call to the appropriate getter or setter method.

Page 102 of 605

http://docs.groovy-lang.org/latest/html/documentation/index.html
http://groovy-lang.org/gdk.html

Example 17.7. Property accessors

bui | d. gradl e

/'l Using a getter nethod
println project. buildDir
println getProject().getBuildDir()

/1 Using a setter method
project.buildDir = '"target'
getProject().setBuildDir('target"’)

17.7.3. Optional parentheses on method calls

Parentheses are optional for method calls.

Example 17.8. Method call without parentheses
bui |l d. gradl e

test.systenProperty 'sone.prop', 'value'
test.systenProperty(' sone. prop', 'value')

17.7.4. List and map literals

Groovy provides some shortcuts for defining Li st and Map instances. Both kinds of literals are
straightforward, but map literals have some interesting twists.

For instance, the “appl y” method (where you typicaly apply plugins) actually takes a map parameter.
', you aren't actually using a map literal,
you're actually using “named parameters’, which have aimost exactly the same syntax as a map literal
(without the wrapping brackets). That named parameter list gets converted to a map when the method is
called, but it doesn't start out as a map.

However, when you have alinelike “appl y pl ugi n:'java

Example 17.9. List and map literals
buil d. gradl e

I/ List literal
test.includes = ['org/gradle/api/**", '"org/gradle/internal/**"']

Li st<String> list = new ArrayLi st<String>()
l'ist.add(' org/gradle/api/**")

list.add(' org/gradle/internal/**")
test.includes = |ist

/1l Map literal.
Map<String, String> map = [keyl:'valuel', key2: 'value2']

/'l Groovy will coerce named argunents
// into a single map argunent

apply plugin: 'java'

Page 103 of 605

17.7.5. Closures as the last parameter in a method

The Gradle DSL uses closures in many places. Y ou can find out more about closures here. When the last
parameter of amethod is a closure, you can place the closure after the method call:
Example 17.10. Closur e as method parameter

bui |l d. gradl e

repositories {
println "in a cl osure"

}

repositories() { println "in a closure" }
repositories({ println "in a closure" })

17.7.6. Closure delegate

Each closure has adel egat e abject, which Groovy uses to look up variable and method references which
are not local variables or parameters of the closure. Gradle uses thisfor configuration closures, where the del egz
object is set to the object to be configured.

Example 17.11. Closur e delegates

bui | d. gradl e

dependenci es {
assert del egate == proj ect. dependenci es
testConmpile("junit:junit:4.12")

del egate.testConpile('junit:junit:4.12")

17.8. Default imports

To make build scripts more concise, Gradle automatically adds a set of import statements to the Gradle
scripts. This means that instead of usingt hr ow new or g. gr adl e. api . t asks. St opExecut i onExcept
you canjust typet hr ow new St opExecuti onExcepti on() instead.

Listed below are the imports added to each script:

Figure17.1. gradle-imports

*
.artifacts.*

.artifacts.cache. *
.artifacts. conmponent . *

.artifacts.dsl.*
.artifacts.ivy.*
.artifacts. maven. *
.artifacts.query.*
.artifacts.repositories.*

Page 104 of 605

http://docs.groovy-lang.org/latest/html/documentation/index.html#_closures

.api.artifacts.result.*

. api . conponent . *
.api.credentials.*
.api.distribution.*

.api .distribution.plugins.*
.api.dsl.*

. api . execution.*
.api . file. *
.api.initialization.?*
.api.initialization.dsl.*
.api .invocation.*

.api . java. ar chi ves. *

.api .l oggi ng. *

. api . | oggi ng. confi guration. *
.api . plugins.*

. api . pl ugi ns. announce. *
.api.plugins.antlr.*

. api . pl ugi ns. bui | dconpari son. gradl e. *
.api.plugins.jetty.*

. api . pl ugi ns. osgi . *

.api .plugins.quality.*

.api . plugins.scal a. *

.api . publish.*

.api . publish.ivy.*

.api . publish.ivy.plugins.*
.api.publish.ivy.tasks.*

. api . publ i sh. maven. *

.api . publi sh. maven. pl ugi ns. *
.api . publ i sh. maven. t asks. *
.api . publish. plugins. *

.api .reporting.*

.api . reporting. conponents. *
.api . reporting. dependenci es. *
.api . reporting. dependents. *
.api . reporting. nodel . *
.api.reporting. plugins. *
.api . resources. *

. api . specs. *

.api . tasks. *

.api .tasks.ant.*

.api .tasks. application.*
.api . tasks. bundl i ng. *

.api .tasks. conpile.*

. api . tasks. di agnostics. *
.api .tasks.increnmental .*

. api . tasks. j avadoc. *

.api .tasks. scal a. *

.api . tasks.testing.*

.api .tasks.testing.junit.*
.api .tasks.testing.testng.*
.api.tasks. util.*

. api . tasks. wr apper . *

aut henti cati on. *

aut henti cation. http.*

bui | di ni t. pl ugi ns. *

buil dinit.tasks.*

ext ernal . j avadoc. *

i de. vi sual st udio. *

i de. vi sual st udi o. pl ugi ns. *
i de. vi sual st udi o. t asks. *
ivy.*

Page 105 of 605

jvm *

jvm application.scripts.*
jvm appl i cation.tasks. *
jvmpl atform *
j vm pl ugi ns. *
jvm tasks. *
jvmtasks. api . *

jvmtest.

*

jvm t ool chai n. *

| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.
| anguage.

maven. *
nodel . *

assenbl er. *

assenbl er. pl ugi ns. *

assenbl er. t
base. *

asks. *

base. artifact.*
base. pl ugi ns. *
base. sources. *

c.*
c. plugins. *
c.tasks.*

cof feescript.*

cpp. *

cpp. pl ugi ns. *

cpp. t asks. *
java. *

java.artifact.*
java. pl ugi ns. *

j ava. t asks.
javascri pt.
jvm *

*

*

j vm pl ugi ns. *

jvmtasks. *
nati vepl at f
nati vepl at f
obj ecti vec.
obj ecti vec.
obj ecti vec

orm*

ormt asks. *
*

pl ugi ns. *

t asks. *

obj ecti vecpp. *
obj ecti vecpp. pl ugi ns. *
obj ecti vecpp. t asks. *

rc.*

rc. pl ugins.
rc.tasks. *
routes. *
scal a. *
scal a. pl ug

*

ns. *

scal a. t asks. *
scal a. t ool chai n. *

twirl.*

nati vepl atform *
nativepl atform pl atform *
nat i vepl at f orm pl ugi ns. *
nativepl atformtasks. *
nati vepl atformtest.

nativepl atformtest

nati vepl atformtest.
nativepl atformtest.

nati vepl atformtest
nativepl atformtest

nati vepl atformtest.

*

.cunit.*

cuni t. pl ugi ns. *
cunit.tasks.*

. googl etest . *
. googl et est . pl ugi ns. *

pl ugi ns. *

Page 106 of 605

nati vepl atformtest.tasks.*

nati vepl at f orm t ool chai n. *

nat i vepl at f orm t ool chai n. pl ugi ns. *
pl at f or m base. *

pl at f or m base. bi nary. *

pl at f or m base. conponent . *

pl at f or m base. pl ugi ns. *

play.*

pl ay. distri bution. *

play. platform *

pl ay. pl ugi ns. *

pl ay. pl ugi ns. i de. *

pl ay. t asks. *

pl ay. t ool chai n. *

pl ugi n. devel . *

pl ugi n. devel . pl ugi ns. *

pl ugi n. devel . t asks. *

pl ugi n. repository.*

pl ugi n. use. *

pl ugi ns. ear. *

pl ugi ns. ear. descri ptor. *

pl ugi ns. i de. api . *

pl ugi ns. i de. ecl i pse. *

pl ugi ns. i de.idea. *

pl ugi ns. j avascri pt. base. *

pl ugi ns. j avascri pt. cof feescri pt. *
pl ugi ns. j avascript.envjs. *

pl ugi ns. j avascri pt. envj s. browser . *
pl ugi ns. javascript.envjs. http.*
pl ugi ns. j avascri pt.envjs. http.sinple.*
pl ugi ns. javascript.jshint.*

pl ugi ns. j avascri pt.rhi no. *

pl ugi ns. j avascri pt. r hi no. wor ker . *
pl ugi ns. si gni ng. *

pl ugi ns. si gni ng. si gnatory. *

pl ugi ns. si gni ng. si gnat ory. pgp. *
pl ugi ns. si gni ng. type. *

pl ugi ns. si gni ng. t ype. pgp. *
process. *

testi ng. base. *

testi ng. base. pl ugi ns. *

t esting.j acoco. pl ugi ns. *
testing.jacoco. t asks. *

Page 107 of 605

i mport org.gradle.testkit.runner.*

import org.gradle.util.*

[6] Any language element except for statement labels.

Page 108 of 605

18

More about Tasks

In the introductory tutorial (Chapter 15, Build Script Basics) you learned how to create simple tasks. You
also learned how to add additional behavior to these tasks later on, and you learned how to create
dependencies between tasks. This was all about simple tasks, but Gradle takes the concept of tasks further.
Gradle supports enhanced tasks, which are tasks that have their own properties and methods. Thisis really
different from what you are used to with Ant targets. Such enhanced tasks are either provided by you or
built into Gradle.

18.1. Defining tasks

We have already seen how to define tasks using a keyword style in Chapter 15, Build Script Basics. There
are afew variations on this style, which you may need to use in certain situations. For example, the keyword
style does not work in expressions.

Example 18.1. Defining tasks
buil d. gradl e

task(hell o) {
doLast {
println "hello"
}
}

task(copy, type: Copy) {
from(file(' srcDir'))
into(buildDir)

Y ou can aso use strings for the task names:

Page 109 of 605

Example 18.2. Defining tasks - using strings for task names
buil d. gradl e

task('hello") {
doLast {
println "hello"

}

}

task(' copy', type: Copy) {
from(file(' srcDir'))
into(buildDir)

Thereis an aternative syntax for defining tasks, which you may prefer to use:

Example 18.3. Defining tasks with alter native syntax
buil d. gradl e

tasks.create(name: 'hello') {
doLast {
println "hello"
}
}

t asks. create(nane: 'copy', type: Copy) {
from(file(' srcDir'))
i nto(buil dbDir)

Here we add tasksto the t asks collection. Have alook at TaskCont ai ner for more variations of thecr eat e
method.

18.2. Locating tasks

Y ou often need to locate the tasks that you have defined in the build file, for example, to configure them or
use them for dependencies. There are a number of ways of doing this. Firstly, each task is available as a
property of the project, using the task name as the property name:

Example 18.4. Accessing tasks as properties

bui |l d. gradl e

task hello

println hello.nane
println project. hello. nane

Tasks are also available through thet asks collection.

Page 110 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/TaskContainer.html

Example 18.5. Accessing tasks via tasks collection

bui | d. gradl e

task hello

println tasks. hell o. name
println tasks['hello'].name

Y ou can access tasks from any project using the task's path using the t asks. get ByPat h() method. You
can call the get ByPat h() method with atask name, or arelative path, or an absolute path.

Example 18.6. Accessing tasks by path

bui |l d. gradl e

project (' :projectA) {
task hello

}

task hello

println tasks.getByPath(' hello').path

println tasks.getByPath(':hello').path

println tasks.getByPath(' projectA hello").path
println tasks.getByPath(':projectA hello').path

Outputof gradl e -q hello
> gradle -q hello
thello
thello

:projectA hello
:projectA hello

Have alook at TaskCont ai ner for more options for locating tasks.

18.3. Configuring tasks

As an example, let's look at the Copy task provided by Gradle. To create a Copy task for your build, you
can declare in your build script:

Example 18.7. Creating a copy task

bui | d. gradl e

task myCopy(type: Copy)

This creates a copy task with no default behavior. The task can be configured using its API (see Copy). The
following examples show several different ways to achieve the same configuration.

Just to be clear, realize that the name of this task is “nyCopy”, but it is of type “Copy”. You can have
multiple tasks of the same type, but with different names. You'll find this gives you a lot of power to

Page 111 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.Copy.html

implement cross-cutting concerns across all tasks of a particular type.

Example 18.8. Configuring atask - various ways

bui |l d. gradl e

Copy nyCopy = task(myCopy, type: Copy)
nmyCopy. from ' resour ces’

nyCopy.into 'target’
nyCopy.include(' **/*. txt', "**/* . xm"', '"**/* properties")

Thisis similar to the way we would configure objects in Java. Y ou have to repeat the context (ny Copy) in
the configuration statement every time. Thisis aredundancy and not very niceto read.

There is another way of configuring atask. It aso preserves the context and it is arguably the most readable.
It isusually our favorite.
Example 18.9. Configuring atask - with closure

buil d. gradl e
task myCopy(type: Copy)

my Copy {
from'resources'

into 'target’
include(' **/*. txt"', "**/*. xm', "**/* properties')

Thisworks for any task. Line 3 of the example isjust a shortcut for thet asks. get ByNane() method. It
is important to note that if you pass a closure to the get ByNanme() method, this closure is applied to
configure the task, not when the task executes.

Y ou can also use a configuration closure when you define a task.

Example 18.10. Defining a task with closure

bui | d. gradl e

task copy(type: Copy) {
from'resources'

into 'target’
include(" **/*.txt", "**/*. xm"', "**/* properties')

Don't forget about
the build phases

A task has both configuration
and actions. When using the <<,
you are simply using a shortcut
to define an action. Code
defined in the configuration

Page 112 of 605

section of your task will get
executed during the

184 Add| ng dependenC| eS tO configuration phase of the build
ataSk regardless of what task was

targeted. See Chapter 21, The

There are several ways you can define the dependencies of a Build Lifecycle for more details

task. In Section 15.5, “ Task dependencies’ you were introduced about the build lifecycle.

to defining dependencies using task hames. Task names can

refer to tasks in the same project as the task, or to tasks in other

projects. To refer to atask in another project, you prefix the name of the task with the path of the project it
belongs to. The following is an example which adds a dependency from pr oj ect A: t askXtoproj ect B: t as

Example 18.11. Adding dependency on task from another project
bui |l d. gradl e

project (' projectA) {
task taskX(dependsOn: ':projectB:taskY') ({
doLast {
println 'taskX

project (' projectB) {
task taskY {
doLast {
println 'tasky

Output of gradl e -qg taskX

> gradle -q taskX
taskyY
taskX

Instead of using atask name, you can define a dependency using a Task object, as shown in this example:

Page 113 of 605

Example 18.12. Adding dependency using task object
buil d. gradl e

task taskX {
doLast {
println 'taskX
}
}

task taskY {
doLast {
println 'taskY

}

}

t askX. dependsOn taskY

Output of gradl e -qg taskX

> gradle -q taskX
taskyY
taskX

For more advanced uses, you can define a task dependency using a closure. When evaluated, the closure is
passed the task whose dependencies are being calculated. The closure should return a single Task or
collection of Task objects, which are then treated as dependencies of the task. The following example adds
adependency from t ask X to all the tasks in the project whose name startswith | i b:

Page 114 of 605

Example 18.13. Adding dependency using closure

bui | d. gradl e

task taskX {
doLast {
println 'taskX

}
}

t askX. dependsOn {
tasks.findAll { task -> task.nane.startsWth('lib") }

}

task libl {
doLast {
println "|ibl
}
}

task lib2 {
doLast {
println '[ib2
}
}

task not ALi b {
doLast {
println 'not ALi b’

}

Output of gradl e -qg taskX
> gradle -q taskX
libl
lib2
taskX

For more information about task dependencies, seethe Task API.

18.5. Ordering tasks

Task ordering is an incubating feature. Please be aware that this feature may change in later Gradle
versions.

In some cases it is useful to control the order in which 2 tasks will execute, without introducing an explicit
dependency between those tasks. The primary difference between atask ordering and atask dependency is
that an ordering rule does not influence which tasks will be executed, only the order in which they will be
executed.

Task ordering can be useful in a number of scenarios:

Page 115 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html

* Enforce sequential ordering of tasks: e.g. 'build’ never runs before 'clean'.

* Run build validations early in the build: e.g. validate | have the correct credentials before starting the
work for arelease build.

® Get feedback faster by running quick verification tasks before long verification tasks: e.g. unit tests
should run before integration tests.

® A task that aggregates the results of all tasks of a particular type: e.g. test report task combines the
outputs of all executed test tasks.

There are two ordering rules available: “ must run after” and “ should run after”.

When you use the “must run after” ordering rule you specify that t askB must always run after t askA,
whenever both t askA and t askB will be run. This is expressed ast askB. nust RunAf t er (t askA) .
The “should run after” ordering ruleis similar but less strict as it will be ignored in two situations. Firstly if
using that rule introduces an ordering cycle. Secondly when using parallel execution and all dependencies of
a task have been satisfied apart from the “should run after” task, then this task will be run regardless of
whether its “should run after” dependencies have been run or not. Y ou should use “should run after” where
the ordering is helpful but not strictly required.

With these rules present it is still possible to execute t ask A without t askB and vice-versa.

Example 18.14. Adding a 'must run after' task ordering
buil d. gradl e

task taskX {
doLast {
println 'taskX
}

}
task taskY {

doLast {
println 'taskY
}

}
taskY. must RunAfter taskX

Output of gradl e -qg taskY taskX
> gradle -q taskY taskX

taskX
t askY

Page 116 of 605

Example 18.15. Adding a 'should run after' task ordering
buil d. gradl e

task taskX {
doLast {
println 'taskX
}

}
task taskY {

doLast {
println 'taskY

}

}
t askY. shoul dRunAfter taskX

Output of gr adl e -g taskY taskX

> gradle -q taskY taskX
taskX
taskY

In the examples above, it is still possible to execute t ask'Y without causing t ask X to run:

Example 18.16. Task ordering does not imply task execution
Output of gradl e -qg taskY

> gradle -q taskY
taskY

To specify a “must run after” or “should run after” ordering between 2 tasks, you use the
Task. must RunAfter (java.l ang. Object[]) and

Task. shoul dRunAfter(java.l ang. Obj ect[]) methods. These methods accept atask instance, a
task name or any other input accepted by Task. dependsOn(j ava. | ang. Gbj ect[]).

Note that “B. must RunAfter (A)” or “B. shoul dRunAfter (A)” does not imply any execution
dependency between the tasks:

® |tispossibleto execute tasks A and B independently. The ordering rule only has an effect when both
tasks are scheduled for execution.
®* Whenrunwith - - conti nue, itispossible for B to execute in the event that A fails.

As mentioned before, the “should run after” ordering rule will be ignored if it introduces an ordering cycle:

Page 117 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/Task.html#shouldRunAfter(java.lang.Object[])
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 18.17. A 'should run after' task orderingisignored if it introducesan ordering cycle

bui | d. gradl e

task taskX {
doLast {
println 'taskX

}

}
task taskY {

doLast {
println 'taskY
}

}
task taskz {

doLast {
println 'taskZ
}

}
t askX. dependsOn t askY

t askY. dependsOn t askZ
t askZ. shoul dRunAfter taskX

Output of gradl e -qg taskX

> gradle -q taskX
taskz
taskY
taskX

18.6. Adding a description to atask

Y ou can add a description to your task. This description is displayed when executing gr adl e t asks.

Example 18.18. Adding a description to a task

bui | d. gradl e

task copy(type: Copy) {

description ' Copies the resource directory to the target

from'resources'
into 'target’

include(' **/*. txt', "**/* xm",

directory.'

"*x[* properties')

18.7. Replacing tasks

Sometimes you want to replace atask. For example, if you want to exchange atask added by the Java plugin

with a custom task of a different type. Y ou can achieve this with:

Page 118 of 605

Example 18.19. Overwriting a task
buil d. gradl e

task copy(type: Copy)

task copy(overwite: true) ({
doLast {
printin('l amthe new one."')

}

Output of gr adl e -q copy

> gradle -q copy
| amthe new one

This will replace atask of type Copy with the task you've defined, because it uses the same name. When
you define the new task, you have to set the over wri t e property to true. Otherwise Gradle throws an
exception, saying that atask with that name already exists.

18.8. Skipping tasks

Gradle offers multiple ways to skip the execution of atask.

18.8.1. Using a predicate

You can use the onl yI f () method to attach a predicate to atask. The task's actions are only executed if
the predicate evaluates to true. Y ou implement the predicate as a closure. The closure is passed the task as a
parameter, and should return true if the task should execute and false if the task should be skipped. The
predicate is evaluated just before the task is due to be executed.

Example 18.20. Skipping a task using a predicate

bui |l d. gradl e

task hello {
doLast {
println 'hello world'

}

}

hel l o.onlylf { !project. hasProperty('skipHello") }

Output of gr adl e hel | o - Pski pHel | o

> gradle hello -PskipHello
> hell o SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

Page 119 of 605

18.8.2. Using StopExecutionException

If the logic for skipping a task can't be expressed with a predicate, you can use the
St opExecut i onExcepti on. If this exception is thrown by an action, the further execution of this
action as well as the execution of any following action of this task is skipped. The build continues with
executing the next task.

Example 18.21. Skipping tasks with StopExecutionException
bui |l d. gradl e

task conpile {
doLast {
println "W are doing the conpile.'
}
}

conpi | e. doFi rst {
/'l Here you would put arbitrary conditions in real life.

/] But this is used in an integration test so we want defined behavi or.
if (true) { throw new StopExecutionException() }

}
task nmyTask(dependsOn: 'conpile') {
doLast {
println 'I amnot affected

}

Output of gr adl e -g myTask

> gradle -q nyTask
| am not affected

Thisfeature is helpful if you work with tasks provided by Gradle. It allows you to add conditional execution
of the built-in actions of such atask. [7]

18.8.3. Enabling and disabling tasks

Every task has an enabl ed flag which defaultsto t r ue. Setting it to f al se prevents the execution of any
of the task's actions.

Page 120 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/StopExecutionException.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/StopExecutionException.html

Example 18.22. Enabling and disabling tasks

bui | d. gradl e

task di sabl eMe {
doLast {
println 'This should not be printed if the task is disabl ed.

}
}

di sabl eMe. enabl ed = fal se

Output of gr adl e di sabl eMe

> gradl e di sabl eMe
: di sabl eMe SKI PPED

BU LD SUCCESSFUL

Total tinme: 1 secs

18.9. Up-to-date checks (AKA Incremental Build)

An important part of any build tool is the ability to avoid doing work that has aready been done. Consider
the process of compilation. Once your source files have been compiled, there should be no need to
recompile them unless something has changed that affects the output, such as the modification of a source
file or the removal of an output file. And compilation can take a significant amount of time, so skipping the
step when it’ s not needed saves alot of time.

Gradle supports this behavior out of the box through a feature it calls incremental build. You have amost
certainly already seen it in action: it’s active nearly[8] every time the UP- TO- DATE text appears next to the
name of atask when you run a build.

How does incremental build work? And what does it take to make use of it in your own tasks? Let’s take a
look.

18.9.1. Task inputs and outputs

In the most common case, a task takes some inputs and generates some outputs. If we use the compilation
example from earlier, we can see that the source files are the inputs and, in the case of Java, the generated
class files are the outputs. Other inputs might include things like whether debug information should be
included.

Page 121 of 605

Figure 18.1. Example task inputsand outputs

Green: inputs
Blue: outputs

Target JDK

Source > JavaCompile —— Class files
files

Fork /
N\

An internal property - it may affect
the execution of the task, but never
the task outputs

task

An important characteristic of an input is that it affects one or more outputs, as you can see from the
previous figure. Different bytecode is generated depending on the content of the source files and the
minimum version of the Java runtime you want to run the code on. That makes them task inputs. But
whether the compilation runsin aforked process or not, determined by the f or k property, has no impact on
what bytecode gets generated. In Gradle terminology, f or k isjust an internal task property.

As part of incremental build, Gradle tests whether any of the task inputs or outputs have changed since the
last build. If they haven't, Gradle can consider the task up to date and therefore skip executing its actions.
Also note that incremental build won't work unless atask has at least one task output, although tasks usually
have at least one input as well.

What this means for build authors is simple: you need to tell Gradle which task properties are inputs and
which are outputs. If atask property affects the output, be sure to register it as an input, otherwise the task
will be considered up to date when it's not. Conversely, don't register properties as inputs if they don’t
affect the output, otherwise the task will potentially execute when it doesn’t need to. Also be careful of
non-deterministic tasks that may generate different output for exactly the same inputs: these should not be
configured for incremental build as the up-to-date checks won’t work.

Let’s now look at how you can register task properties as inputs and outputs.

Custom task types

If you're implementing a custom task as a class, then it takes just two steps to make it work with incremental
build:

1. Createtyped fields or properties (via getter methods) for each of your task inputs and outputs
2. Add the appropriate annotation to each of those fields or getter methods

Gradle supports three main categories of inputs and outputs:

® Simplevalues
Things like strings and numbers. More generally, a simple value can have any type that implements Ser i al i

Page 122 of 605

* Filesystem types
These consist of the standard Fi | e class but also derivatives of Gradle’'s Fi | eCol | ecti on type and
anything else that can be passed to either the Proj ect. fil e(j ava. | ang. Obj ect) method - for
singlefile/directory properties- or the Pr oj ect . fi |l es(j ava. | ang. Gbj ect[]) method.

® Nested values
Custom types that don’t conform to the other two categories but have their own properties that are inputs
or outputs. In effect, the task inputs or outputs are nested inside these custom types.

As an example, imagine you have a task that processes templates of varying types, such as FreeMarker,
Velocity, Moustache, etc. It takes template source files and combines them with some model data to
generate populated versions of the template files.

Thistask will have three inputs and one output:

* Template source files

* Mode data

® Template engine

* Where the output files are written

When you' re writing a custom task class, it's easy to register properties as inputs or outputs via annotations.
To demonstrate, here is a skeleton task implementation with some suitable inputs and outputs, along with
their annotations:

Example 18.23. Custom task class

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

Page 123 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

package org. exanpl e;

i nport java.io.File;

i nport java.util.Hashap;

i mport org.gradle.api.*;
inport org.gradle.api.file.*;
i nport org.gradl e.api.tasks. *;

public class ProcessTenpl ates extends Defaul t Task {
private Tenpl at eEngi neType t enpl at eEngi ne;
private FileCollection sourceFiles;
private Tenpl ateData tenpl at eDat a;
private File outputDir;

@ nput
publ i ¢ Tenpl at eEngi neType get Tenpl at eEngi ne() {
return this.tenpl at eEngi ne;

}

@nput Fi | es
public FileCollection getSourceFiles() {
return this.sourceFiles;

}

@\Nest ed
public Tenpl at eData get Tenpl ateDat a() {
return this.tenpl atebData;

}

@ut put Di rectory
public File getQutputDir() { return this.outputDir; }

[l + setter nethods for the above - assune we’ve defined them
@askAction

public void processTenpl ates() {
Il

}

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ Tenpl at eDat a. j ava

Page 124 of 605

package org. exanpl e;

i nport java.util.HashMap;
i nport java.util.Mp;
i mport org.gradl e.api.tasks.|nput;

public class Tenpl ateData {
private String namne;
private Map<String, String> vari abl es;

public Tenpl ateData(String name, Map<String, String> variables) {
t hi s. name = nane;

this.variabl es = new HashMap<>(vari abl es);

}

@ nput
public String getName() { return this.name; }

@ nput
public Map<String, String> getVariables() {
return this.variabl es;

}

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
: processTenpl at es

BU LD SUCCESSFUL

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
:processTenpl ates UP- TO- DATE

BU LD SUCCESSFUL

There's plenty to talk about in this example, so let’s work through each of the input and output propertiesin
turn:

®* tenpl at eEngi ne
Represents which engine to use when processing the source templates, e.g. FreeMarker, Velocity, etc.
You could implement this as a string, but in this case we have gone for a custom enum as it provides
greater type information and safety. Since enums implement Ser i al i zabl e automatically, we can
treat this as asimple value and use the @ nput annotation, just aswe would with a St r i ng property.

® sourceFiles
The source templates that the task will be processing. Single files and collections of files need their own
special annotations. In this case, we' re dealing with a collection of input filesand so weusethe @ nput Fi | e
annotation. You'll see more file-oriented annotationsin atable later.

® tenpl at eDat a
For this example, we're using a custom class to represent the model data. However, it does not
implement Seri al i zabl e, so we can’t use the @ nput annotation. That's not a problem as the
properties within Tenpl at eDat a - a string and a hash map with serializable type parameters - are

Page 125 of 605

seridlizable and can be annotated with @ nput . We use @\est ed ont enpl at eDat a to let Gradle
know that thisis avalue with nested input properties.

® outputDir

The directory where the generated files go. As with input files, there are several annotations for output
files and directories. A property representing a single directory requires @ut put Di rect ory. You'll

learn about the others soon.

These annotated properties mean that Gradle will skip the task if none of the source files, template engine,
model data or generated files have changed since the previous time Gradle executed the task. Thiswill often
save a significant amount of time. Y ou can learn how Gradle detects changes | ater.

This example is particularly interesting because it works with collections of source files. What happens if
only one source file changes? Does the task process all the source files again or just the modified one? That
depends on the task implementation. If the latter, then the task itself is incremental, but that’s a different
feature to the one we' re discussing here. Gradle does help task implementers with this viaits incremental task inpt

feature.

Now that you have seen some of the input and output annotations in practice, let’s take a look at all the
annotations available to you and when you should use them. The table below lists the available annotations
and the corresponding property type you can use with each one.

Table 18.1. Incremental build annotations

Annotation

@ nput

@nputFile
@nputDirectory

@nputFiles

@ asspath

@ut putFile
@t put Di rectory

@ut put Fi |l es

@ut putDirectories

Expected property
type
Any serializable
type
File*
Fil e*

Iterabl e<Fil e>

*

I terabl e<Fil e>

*

Fil e*
File*

|terabl e<Fil e>

*

lterabl e<Fil e>

*

Description

A simple input value

A single input file (not directory)
A single input directory (not file)

An iterable of input files and directories

An iterable of input files and directories that represent a Je
classpath. This allows the task to ignore irrelevant change
the property, such as different names for the samefiles. It
similar to annotating the property with *@OrderSensitive’
and “@PathSensitive(RELATIVE)", but it will also ignore
the names of JAR files directly added to the classpath.

A single output file (not directory)
A single output directory (not file)

An iterable of output files (no directories)

An iterable of output directories (no files)

Page 126 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Input.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/InputFile.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/InputDirectory.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/InputFiles.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Classpath.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/OutputFile.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/OutputDirectory.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/OutputFiles.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/OutputDirectories.html

@Nest ed Any custom type
@onsol e Any type
@ nt er nal Any type

@ki pwhenEnpt y

@t i onal

@ der Sensitive

@at hSensitive

A custom type that may not implement Seri al i zabl e
does have at least one field or property marked with one o
the annotations in this table. It could even be another @Ne

Indicates that the property is neither an input nor an outpu
It simply affects the console output of the task in some we
such asincreasing or decreasing the verbosity of the task.

Indicates that the property is used internally but is neither
input nor an outpuit.

Used with @ nput Fi | es or @ nput Di rect ory tote
Gradleto skip the task if the corresponding iterable of file
or directory are empty.

Used with any of the other incremental build annotations

listed inthe Opt i onal API documentation. This annotat
disables validation checks on the corresponding property.

See the section on validation for more details.

Used with @ nput Fi | es or @ nput Di rect ory tote
Gradle that achangein the order of the files should mark 1
task out-of-date.

Used with any input file property to tell Gradleto only
consider the given part of the file paths as important. For
example, if aproperty isannotated with @at hSensi t i
, then moving the files around without changing their
contents will not make the task out-of-date.

* Infact, Fi | e can be any type accepted by Proj ect. fil e(j ava. |l ang. Obj ect) andl|terabl e<Fi |
can be any type accepted by Pr oj ect . fi |l es(j ava. | ang. Qbj ect[]) . Thisincludesinstances of Cal | ¢
, such as closures, allowing for lazy evaluation of the property values. Be aware that the types Fi | eCol | ect i

andFi | eTree arel t er abl e<Fi | e>s.

The Consol e and | nt er nal annotations in the table are special cases as they don’'t declare either task
inputs or task outputs. So why use them? It's so that you can take advantage of the Java Gradle Plugin Developmer
to help you develop and publish your own plugins. This plugin checks whether any properties of your
custom task classes lack an incremental build annotation. This protects you from forgetting to add an

appropriate annotation during devel opment.

Custom task classes are an easy way to bring your own build logic into the arena of incremental build, but
you don’t always have that option. That's why Gradle also provides an aternative API that can be used with

any tasks, which we look at next.

Page 127 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Nested.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Internal.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Optional.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/OrderSensitive.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/PathSensitive.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Console.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/Internal.html

Runtime API

When you don’t have access to the source for a custom task class, there is no way to add any of the
annotations we covered in the previous section. Fortunately, Gradle provides a runtime API for scenarios
just like that. It can also be used for ad-hoc tasks, as you'll see next.

Using it for ad-hoc tasks

This runtime API is provided through a couple of aptly named properties that are available on every Gradle
task:

®* Task. get | nput s() of type Taskl nput s
* Task. get Qut put s() of type TaskQut put s

These objects have methods that allow you to specify files, directories and values which constitute the task’s
inputs and outputs. In fact, the runtime APl has almost feature parity with the annotations. All it lacks is
validation of whether declared files are actually files and declared directories are directories. Nor will it
create output directoriesif they don't exist. But that's it.

Let’s take the template processing example from before and see how it would look as an ad-hoc task that
uses theruntime API:

Example 18.24. Ad-hoc task

bui | d. gradl e

task processTenpl at esAdHoc {
i nputs. property("engine", Tenpl at eEngi neType. FREEMARKER)
inputs.files(fileTree("src/tenplates"))
i nputs. property("tenpl ateDat a. nane”, "docs")
i nputs. property("tenpl ateData. vari abl es", [year: 2013])
out put s. di r (" $bui | dDi r/ genCut put 2")

doLast {
/'l Process the tenpl ates here

}

Output of gr adl e processTenpl at esAdHoc

> gradl e processTenpl at esAdHoc
: processTenpl at esAdHoc

BUI LD SUCCESSFUL

As before, there's much to talk about. To begin with, you should really write a custom task class for this as
it's a non-trivial implementation that has several configuration options. In this case, there are no task
properties to store the root source folder, the location of the output directory or any of the other settings.
That's deliberate to highlight the fact that the runtime APl doesn’t require the task to have any state. In
terms of incremental build, the above ad-hoc task will behave the same as the custom task class.

All theinput and output definitions are done through the methods on i nput s and out put s, such asproperty

Page 128 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:inputs
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/TaskInputs.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:outputs
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/TaskOutputs.html

,files(),anddir (). Gradle performs up-to-date checks on the argument values to determine whether

the task needs to run again or not. Each method corresponds to one of the incremental build annotations, for

examplei nput s. property() mapsto @ nput and out puts. di r() mapsto @ut put Directory
. The only differenceisthat thefil e(),files(),dir() anddirs() methodsdon't validate the type

of file object at the given path (file or directory), unlike the annotations.

One notable difference between the runtime APl and the annotations is the lack of a method that
corresponds directly to @Nest ed. That's why the example uses two property() declarations for the
template data, one for each Tenpl at eDat a property. You should utilize the same technique when using
the runtime API with nested values.

Using it for custom task types

Another type of example involves adding input and output definitions to instances of a custom task class that
lacks the requisite annotations. For example, imagine that the Pr ocessTenpl at es task is provided by a
plugin and that it's missing the incremental build annotations. In order to make up for that deficiency, you
can use the runtime API:

Example 18.25. Using runtime API with custom task type
buil d. gradl e

task processTenpl atesRunti ne(type: ProcessTenpl at esNoAnnot ati ons) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
sourceFiles = fileTree("src/tenpl ates")
tenpl at eData = new Tenpl ateData("test", [year: 2014])
outputDir = file("$buildD r/genQutput3")

i nputs. property("engi ne",tenpl at eEngi ne)
inputs.files(sourceFiles)

i nputs. property("tenpl ateDat a. nane", tenpl ateDat a. nane)

i nputs. property("tenpl ateDat a. vari abl es", tenpl ateData. vari abl es)
outputs.dir(outputDir)

Output of gr adl e processTenpl at esRunti nme

> gradl e processTenpl at esRunti e
:processTenpl at esRunti ne

BU LD SUCCESSFUL

Output of gr adl e processTenpl at esRunti me

> gradl e processTenpl at esRunti ne
: processTenpl at esRunti me UP- TO- DATE

BU LD SUCCESSFUL

As you can see, we can both configure the tasks properties and use those properties as arguments to the
incremental build runtime API. Using the runtime API likethisisalittlelike using doLast () and doFi r st ()
to attach extra actions to a task, except in this case we're attaching information about inputs and outputs.
Note that if the task type is already using the incremental build annotations, the runtime API will add inputs
and outputs rather than replace them.

Page 129 of 605

Fine-grained configuration

The runtime APl methods only allow you to declare your inputs and outputs in themselves. However, the
file-oriented ones return a builder - of type Taskl nput Fi | ePr opert yBui | der - that let'syou provide
additional information about those inputs and outputs.

You can learn about all the options provided by the builder in its API documentation, but we'll show you a
simple example here to give you an idea of what you can do.

Let's say we don’t want to run the pr ocessTenpl at es task if there are no source files, regardless of
whether it's a clean build or not. After all, if there are no source files, there’' s nothing for the task to do. The
builder alows us to configure this like so:

Example 18.26. Using skipWhenEmpty() via the runtime API
bui |l d. gradl e

task processTenpl at esRunti neConf (type: ProcessTenpl at esNoAnnot ati ons) {
I/
sourceFiles = fileTree("src/tenplates") {
include "**/* fnf

}

i nputs.files(sourceFiles).skipWenEnpty()
[/

Output of gr adl e cl ean processTenpl at esRunt i meConf

> gradl e cl ean processTenpl at esRunti meConf
: processTenpl at esRunt i meConf UP- TO- DATE

BU LD SUCCESSFUL

So the Taskl nputs. fil es() method returns a builder that has a ski pWhenEnpt y() method. By
caling this method, we tell Gradle that the task should be considered up to date if the corresponding input
file collection is empty, even if the task hasn't run before.

Prior to Gradle 3.0, you had to use the Taskl nput s. source() and Taskl nputs. sourcebDir ()
methods to get the same behavior as with ski pWhenEnpt y() . These methods are now deprecated and
should not be used with Gradle 3.0 and above.

Now that you have seen both the annotations and the runtime API, you may be wondering which API you
should be using. Our recommendation is to use the annotations wherever possible, and it's sometimes worth
creating a custom task class just so that you can make use of them. The runtime API is more for situationsin
which you can’t use the annotations.

Important beneficia side effects

Once you declare atask’s formal inputs and outputs, Gradle can then infer things about those properties. For
example, if an input of one task is set to the output of another, that means the first task depends on the
second, right? Gradle knows this and can act upon it.

Page 130 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/TaskInputFilePropertyBuilder.html

WEe'll look at this feature next and also some other features that come from Gradle knowing things about
inputs and outputs.

Inferred task dependencies

Consider an archive task that packages the output of the pr ocessTenpl at es task. A build author will

see that the archive task obviously requires pr ocessTenpl at es to run first and so may add an explicit depen
. However, if you define the archive task like so:

Example 18.27. Inferred task dependency via task outputs

bui |l d. gradl e

t ask packageFiles(type: Zip) {
from processTenpl at es. out put s

}

Output of gr adl e cl ean packageFil es

> gradl e cl ean packageFil es
. processTenpl at es
: packageFi | es

BU LD SUCCESSFUL

Gradle will automatically make packageFi | es depend on pr ocessTenpl at es. It can do this because
it's aware that one of the inputs of packageFiles requires the output of the processTemplates task. We call
this an inferred task dependency.

The above example can also be written as

Example 18.28. Inferred task dependency via atask argument
bui |l d. gradl e

t ask packageFil es2(type: Zip) {
from processTenpl at es

}

Output of gr adl e cl ean packageFil es2
> gradl e cl ean packageFil es2
: processTenpl at es

: packageFi | es2

BU LD SUCCESSFUL

Thisis because the f r on() method can accept a task object as an argument. Behind the scenes, f r om()
uses the proj ect.fil es() method to wrap the argument, which in turn exposes the task’'s formal
outputs as afile collection. In other words, it’'s a special case!

Page 131 of 605

Input and output validation

The incremental build annotations provide enough information for Gradle to perform some basic validation
on the annotated properties. In particular, it does the following for each property before the task executes:

* @nput Fi | e - verifiesthat the property has avalue and that the path corresponds to afile (not a
directory) that exists.

* @nputDirectory-sameasfor @ nput Fi | e, except the path must correspond to a directory.

® @out put Di r ect ory - verifiesthat the path doesn’t match afile and also creates the directory if it
doesn’t already exist.

Such validation improves the robustness of the build, allowing you to identify issues related to inputs and
outputs quickly.

You will occasionally want to disable some of this validation, specifically when an input file may validly
not exist. That's why Gradle provides the @pt i onal annotation; you use it to tell Gradle that a particular
input is optional and therefore the build should not fail if the corresponding file or directory doesn't exist.

Continuous build

One last benefit of defining task inputs and outputs is continuous build. Since Gradle knows what files a task
depends on, it can automatically run atask again if any of its inputs change. By activating continuous build
when you run Gradle - through the - - cont i nuous or -t options - you will put Gradle into a state in
which it continually checks for changes and executes the requested tasks when it encounters such changes.

Y ou can find out more about this feature in Chapter 9, Continuous build.

18.9.2. Advanced techniques

Everything you' ve seen so far in this section will cover most of the use cases you' Il encounter, but there are
some scenarios that need special treatment. We'll present afew of those next with the appropriate solutions.

Adding your own cached input/output methods

Have you ever wondered how thef r om() method of the Copy task works? It's not annotated with @ nput Fi | «
and yet any files passed to it are treated as formal inputs of the task. What' s happening?

The implementation is quite simple and you can use the same technique for your own tasks to improve their
APIs. Write your methods so that they add files directly to the appropriate annotated property. As an
example, here’s how to add a sources() method to the custom ProcessTenpl at es class we
introduced earlier:

Page 132 of 605

Example 18.29. Declaring a method to add task inputs

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

public class ProcessTenpl ates extends Defaul t Task {
Il
private FileCollection sourceFiles = getProject().files();

@ski pwhenEnpt y

@nput Fi | es

@rat hSensi ti ve(Pat hSensi ti vity. NONE)

public FileCollection getSourceFiles() {
return this.sourceFiles;

}

public void sources(FileCollection sourceFiles) {
this.sourceFiles = this.sourceFiles.plus(sourceFiles);

}

Il

bui | d. gradl e

task processTenpl ates(type: ProcessTenpl ates) {
t enpl at eEngi ne = Tenpl at eEngi neType. FREEMARKER
tenpl ateData = new Tenpl ateData("test”, [year: 2012])
outputDir = file("$buildD r/genCutput")

sources fileTree("src/tenpl ates")

Output of gr adl e processTenpl at es

> gradl e processTenpl at es
:processTenpl at es

BU LD SUCCESSFUL

In other words, as long as you add values and files to formal task inputs and outputs during the configuration
phase, they will be treated as such regardiess from where in the build you add them.

If we want to support tasks as arguments as well and treat their outputs as the inputs, we can usethe pr oj ect . fi
method like so:

Page 133 of 605

Example 18.30. Declaring a method to add a task asan input

bui | dSrc/ src/ mai n/javal or g/ exanpl e/ ProcessTenpl at es. j ava

Il
public void sources(Task inputTask) {
this.sourceFiles = this.sourceFiles.plus(getProject().files(inputTask));

bui | d. gradl e

task copyTenpl ates(type: Copy) ({
into "$buildDir/tnp"
from"src/tenpl at es"

}

task processTenpl ates2(type: ProcessTenpl ates) {
Il
sources copyTenpl at es

Output of gr adl e processTenpl at es2

> gradl e processTenpl at es2
:copyTenpl at es
: processTenpl at es2

BU LD SUCCESSFUL

This technique can make your custom task easier to use and result in cleaner build files. As an added benefit,
our use of getProject().files() means that our custom method can set up an inferred task
dependency.

One last thing to note: if you are developing a task that takes collections of source files as inputs, like this
example, consider using the built-in Sour ceTask. It will save you having to implement some of the
plumbing that we put into Pr ocessTenpl at es.

Linkingan @ut put Direct ory toan @ nput Fi | es

When you want to link the output of one task to the input of another, the types often match and a simple
property assignment will provide that link. For example, aFi | e output property can be assignedtoaFi | e
input.

Unfortunately, this approach breaks down when you want the files in atask’s @ut put Di r ect ory (of
type Fi | e) to become the source for another task’s @ nput Fi | es property (of typeFi | eCol | ecti on
). Since the two have different types, property assignment won't work.

As an example, imagine you want to use the output of a Java compilation task - viathe desti nati onDi r
property - asthe input of a custom task that instruments a set of files containing Java bytecode. This custom
task, which we'll call | nstrunent , hasacl assFi | es property annotated with @ nput Fi | es. You
might initially try to configure the task like so:

Page 134 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.SourceTask.html

Example 18.31. Failed attempt at setting up an inferred task dependency
buil d. gradl e
apply plugin: "java"

task badl nstrument Cl asses(type: Instrument) {

classFiles = fil eTree(conpil eJava. desti nati onbDir)
destinationDir = file("$buildDir/instrunmented")

Output of gr adl e cl ean badl nstrument C asses

> gradl e cl ean badl nstrunent C asses
:cl ean UP- TO- DATE
:badl nstrument d asses UP- TO DATE

BU LD SUCCESSFUL

There's nothing obviously wrong with this code, but you can see from the console output that the
compilation task is missing. In this case you would need to add an explicit task dependency between i nst r unen
and conpi | eJava viadependsOn. Theuse of fil eTree() means that Gradle can’t infer the task
dependency itself.

One solutionisto usethe TaskQut put s. fi | es property, as demonstrated by the following example:
Example 18.32. Setting up an inferred task dependency between output dir and input files

bui | d. gradl e

task instrunentd asses(type: Instrument) {
cl assFiles = conpil eJava. outputs.files

destinationDir = file("$buildDir/instrunmented")

Output of gr adl e cl ean i nstrunment Cl asses
> gradl e clean instrunmentC asses
:cl ean
:conpi | eJava
sinstrunent Cl asses

BU LD SUCCESSFUL

Alternatively, you can get Gradle to access the appropriate property itself by using the pr oj ect . fil es()
method in place of proj ect.fil eTree():

Page 135 of 605

Example 18.33. Setting up an inferred task dependency with files()
buil d. gradl e

task instrunmentd asses2(type: Instrunment) {
classFiles = fil es(conpil eJava)

destinationDir = file("$buildDir/instrunmented")

Output of gr adl e cl ean i nstrunment Cl asses2

> gradl e clean instrumentd asses2
:cl ean

:conpi | eJava

sinstrunent d asses2

BU LD SUCCESSFUL

Remember that f i | es() can take tasks as arguments, whereasfi | eTr ee() cannot.

The downside of this approach is that al file outputs of the source task become the input files of thetarget - i nst |
in this case. That's fine aslong as the source task only has a single file-based output, like the JavaConpi | e
task. But if you have to link just one output property among several, then you need to explicitly tell Gradle
which task generates the input files using the bui | t By method:

Example 18.34. Setting up an inferred task dependency with builtBy()

bui | d. gradl e

task instrunmentd assesBuil tBy(type: Instrunment) ({
classFiles = fileTree(conpil eJava. destinationDir) {
bui | t By conpi |l eJava

}

destinationDir = file("$buildD r/instrunmented")

Output of gr adl e cl ean i nstrument C assesBui | t By
> gradl e clean instrument Cl assesBuil t By
:clean
:conpi | eJava
sinstrunent C assesBui | t By

BU LD SUCCESSFUL

You can of course just add an explicit task dependency via dependsOn, but the above approach provides
more semantic meaning, explaining why conpi | eJava hasto run beforehand.

Providing custom up-to-date logic

Gradle automatically handles up-to-date checks for output files and directories, but what if the task output is
something else entirely? Perhaps it's an update to a web service or a database table. Gradle has no way of
knowing how to check whether the task is up to date in such cases.

That's where the upToDat eWhen() method on TaskQut put s comesin. This takes a predicate function

Page 136 of 605

that is used to determine whether a task is up to date or not. One use case is to disable up-to-date checks
completely for atask, like so:

Example 18.35. Ignoring up-to-date checks

bui |l d. gradl e

task al waysl nstrument Cl asses(type: Instrunment) {
classFiles = fil es(conpil eJava)
destinationDir = file("$buil dDir/instrunented")

out put s. upToDat eWhen { fal se }

Output of gr adl e cl ean al waysl nstrunent C asses

> gradl e clean al waysl nstrunent C asses
:conpi | eJava
:al waysl nstrument C asses

BU LD SUCCESSFUL

Output of gr adl e al waysl nstrument Cl asses

> gradl e al waysl nstrunent Cl asses
:conpi | eJava UP- TO DATE
:al waysl nstrunment d asses

BU LD SUCCESSFUL

The{ fal se } closure ensures that copyResour ces will always perform the copy, irrespective of
whether there is no change in the inputs or outputs.

Y ou can of course put more complex logic into the closure. Y ou could check whether a particular record in a
database table exists or has changed for example. Just be aware that up-to-date checks should _save you
time. Don’t add checks that cost as much or more time than the standard execution of the task. In fact, if a
task ends up running frequently anyway, because it’s rarely up to date, then it may not be worth having an
up-to-date check at all. Remember that your checks will always run if the task isin the execution task graph.

One common mistake is to use upToDat eWhen() instead of Task. onl ylI f (). If you want to skip a
task on the basis of some condition unrelated to the task inputs and outputs, then you should use onl yI f ()
. For example, in cases where you want to skip atask when a particular property is set or not set.

18.9.3. How doesit work?

Before atask is executed for the first time, Gradle takes a snapshot of the inputs. This snapshot contains the
paths of input files and a hash of the contents of each file. Gradle then executes the task. If the task
completes successfully, Gradle takes a snapshot of the outputs. This snapshot contains the set of output files
and a hash of the contents of each file. Gradle persists both snapshots for the next time the task is executed.

Each time after that, before the task is executed, Gradle takes a new snapshot of the inputs and outputs. If
the new snapshots are the same as the previous snapshots, Gradle assumes that the outputs are up to date and
skips the task. If they are not the same, Gradle executes the task. Gradle persists both snapshots for the next
time the task is executed.

Page 137 of 605

Gradle also considers the code of the task as part of the inputs to the task. When a task, its actions, or its
dependencies change between executions, Gradle considers the task as out-of-date.

Gradle understands if afile property (e.g. one holding a Java classpath) is order-sensitive. When comparing
the snapshot of such a property, even a change in the order of the files will result in the task becoming
out-of-date.

Note that if atask has an output directory specified, any files added to that directory since the last time it
was executed are ignored and will NOT cause the task to be out of date. Thisis so unrelated tasks may share
an output directory without interfering with each other. If this is not the behaviour you want for some
reason, consider using TaskQut put s. upToDat eWhen(gr oovy. | ang. Cl osur €)

18.10. Task rules

Sometimes you want to have a task whose behavior depends on a large or infinite number value range of
parameters. A very nice and expressive way to provide such tasks are task rules:

Example 18.36. Task rule

bui |l d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskName ->
if (taskNane.startsWth("ping")) {
task(taskNanme) {
doLast {

println “Pinging: " + (taskName - 'ping')

Output of gradl e -qg pi ngServer1l

> gradle -q pingServerl
Pi ngi ng: Serverl

The String parameter is used as a description for the rule, which is shown with gr adl e t asks.

Rules are not only used when calling tasks from the command line. Y ou can also create dependsOn relations
on rule based tasks:

Page 138 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen(groovy.lang.Closure)

Example 18.37. Dependency on rule based tasks
buil d. gradl e

tasks. addRul e("Pattern: ping<ID>") { String taskNanme ->
i f (taskNane.startsWth("ping")) {
task(taskName) {
doLast {
println "Pinging: " + (taskNanme - 'ping')
}

task groupPing {
dependsOn pi ngServer 1, pingServer2

}

Output of gradl e -g groupPi ng

> gradle -q groupPing
Pi ngi ng: Serverl
Pi ngi ng: Server2

If yourun“gradl e -q tasks” youwon' find atask named “pi ngSer ver 1” or “pi ngSer ver 2”,
but this script is executing logic based on the request to run those tasks.

18.11. Finalizer tasks

Finalizers tasks are an incubating feature (see Section C.1.2, “Incubating”).

Finalizer tasks are automatically added to the task graph when the finalized task is scheduled to run.

Page 139 of 605

Example 18.38. Adding atask finalizer
buil d. gradl e

task taskX {
doLast {
println 'taskX

}

}
task taskY {

doLast {
println 'taskY

}
}

taskX. finalizedBy taskY

Output of gradl e -qg taskX

> gradle -q taskX
taskX
taskyY

Finalizer tasks will be executed even if the finalized task fails.

Example 18.39. Task finalizer for a failing task
bui |l d. gradl e

task taskX {
doLast {
println 'taskX
t hrow new Runti meExcepti on()
}

}
task taskY {

doLast {
println 'taskY

}

}

taskX. finalizedBy taskY

Output of gradl e -qg taskX
> gradle -q taskX

taskX
t askY

On the other hand, finalizer tasks are not executed if the finalized task didn't do any work, for exampleif it
is considered up to date or if a dependent task fails.

Finalizer tasks are useful in situations where the build creates a resource that has to be cleaned up regardless
of the build failing or succeeding. An example of such aresource is aweb container that is started before an
integration test task and which should be always shut down, even if some of the tests fail.

To specify afinalizer task you use the Task. fi nal i zedBy(j ava. | ang. Qbj ect[]) method. This

Page 140 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])

method accepts a task instance, a task name, or any other input accepted by
Task. dependsOn(j ava. | ang. Obj ect[]).

18.12. Summary

If you are coming from Ant, an enhanced Gradle task like Copy seems like a cross between an Ant target
and an Ant task. Although Ant's tasks and targets are really different entities, Gradle combines these notions
into a single entity. Simple Gradle tasks are like Ant's targets, but enhanced Gradle tasks also include
aspects of Ant tasks. All of Gradl€e's tasks share a common APl and you can create dependencies between
them. These tasks are much easier to configure than an Ant task. They make full use of the type system, and
are more expressive and easier to maintain.

[7] You might be wondering why there is neither an import for the St opExecut i onExcept i on nor do
we access it viaits fully qualified name. The reason is, that Gradle adds a set of default imports to your
script (see Section 17.8, “ Default imports™).

[8] You will also see UP- TO- DATE next to tasks that have no actions, even though that’ s nothing to do with
incremental build.

Page 141 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

19

Working With Files

Most builds work with files. Gradle adds some concepts and APIsto help you achieve this.

19.1. Locating files

You can locate afile relative to the project directory using the Proj ect . fi |l e(j ava. | ang. Obj ect)
method.

Example 19.1. L ocating files

bui | d. gradl e

/1 Using a relative path
File configFile = file('src/config.xm")

/1 Using an absol ute path

configFile = file(configFile.absol utePath)

/'l Using a File object with a relative path
configFile = file(new File('src/config.xm"))

You can pass any object to the fi | e() method, and it will attempt to convert the value to an absolute
Fi | e object. Usually, you would passit aSt ri ng or Fi | e instance. If this path is an absolute path, it is
used to construct a Fi | e instance. Otherwise, a Fi | e instance is constructed by prepending the project
directory path to the supplied path. Thef i | e() method also understands URLSs, suchasfi |l e: / sone/ pat h.»

Using this method is a useful way to convert some user provided value into an absolute Fi | e. It is
preferableto using new Fi | e(sonePat h) ,asfi | e() awaysevauatesthe supplied path relative to the
project directory, which is fixed, rather than the current working directory, which can change depending on
how the user runs Gradle.

19.2. File collections

A file collection issimply a set of files. It isrepresented by the Fi | eCol | ect i on interface. Many objects
in the Gradle APl implement this interface. For example, dependency configurationsimplement Fi | eCol | ect i

One way to obtain a FileCollection instance is to use the

Page 142 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/file/FileCollection.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Project.files(java.lang. Object[]) method. You can pass this method any number of objects,
which are then converted into aset of Fi | e objects. Thefi | es() method accepts any type of object asits
parameters. These are evaluated relative to the project directory, as per the fi | e() method, described in
Section 19.1, “Locating files’. You can also pass collections, iterables, maps and arraysto the fi | es()
method. These are flattened and the contents converted to Fi | e instances.

Example 19.2. Creating afile collection

bui |l d. gradl e

FileCol l ection collection = files('src/filel.txt",

new File('src/file2.txt"),
["src/file3.txt', "src/filed.txt'])

A file collection isiterable, and can be converted to a number of other types using the as operator. Y ou can
also add 2 file collections together using the + operator, or subtract one file collection from another using
the - operator. Here are some examples of what you can do with afile collection.

Example 19.3. Using a file collection
bui |l d. gradl e

/[l lterate over the files in the collection
collection.each { File file ->
printin file.nanme

}

/'l Convert the collection to various types
Set set = collection.files

Set set2 = collection as Set

List list = collection as List

String path = col |l ection. asPath

File file = collection.singleFile

File file2 = collection as File

/1 Add and subtract collections
def union = collection + files('src/file3.txt")
def different = collection - files('src/file3.txt")

You can also pass the fi |l es() method a closure or a Cal | abl e instance. This is caled when the
contents of the collection are queried, and its return value is converted to a set of Fi | e instances. The return
value can be an object of any of the types supported by the fi | es() method. This is a simple way to
‘implement' the Fi | eCol | ect i on interface.

Page 143 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])

Example 19.4. Implementing a file collection
buil d. gradl e

task list {
doLast {
File srcDir

/'l Create a file collection using a closure
collection = files { srcDir.listFiles() }

srcDir = file('src')
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { println it }

srcDir = file(' 'src2")
println "Contents of $srcDir.nane"
collection.collect { relativePath(it) }.sort().each { println it }

Outputof gradle -qg |i st

> gradle -q list
Contents of src
src/dirl
src/filel.txt
Contents of src2
src2/dirl
src2/dir2

Some other types of thingsyou can passtofi |l es():

Fil eCol | ection
These are flattened and the contents included in the file collection.

Task
The output files of the task are included in the file collection.

TaskQut put s
The output files of the TaskOutputs are included in the file collection.

It is important to note that the content of afile collection is evaluated lazily, when it is needed. This means
you can, for example, create a Fi | eCol | ect i on that represents files which will be created in the future
by, say, some task.

19.3. Filetrees

A filetree isacollection of files arranged in a hierarchy. For example, afile tree might represent a directory
tree or the contents of a ZIP file. It is represented by the Fi | eTr ee interface. The Fi | eTr ee interface
extends Fi | eCol | ecti on, so you can treat a file tree exactly the same way as you would a file
collection. Severa objectsin Gradle implement the Fi | e Tr ee interface, such as source sets.

Page 144 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/file/FileTree.html

One way to obtain a Fi | eTr ee instance is to use the Project.fil eTree(java. util.Map)
method. Thiscreatesa Fi | eTr ee defined with a base directory, and optionally some Ant-style include and
exclude patterns.

Example 19.5. Creating afiletree

bui |l d. gradl e

/] Create a file tree with a base directory
FileTree tree = fileTree(dir: 'src/nmin')

/1 Add include and excl ude patterns to the tree
tree.include '**/* java'
tree. exclude '**/ Abstract*’

/Il Create a tree using path
tree = fileTree('src').include('**/*.]ava')

/Il Create a tree using closure
tree = fileTree('src') {
include '**/* java'

}

/Il Create a tree using a map

tree = fileTree(dir: "src', include: '**/*. java')

tree fileTree(dir: '"src', includes: ['**/*.java', "**/*.xm"'])

tree fileTree(dir: '"src', include: '**/* java', exclude: '**/*test*/**")

You use afile tree in the same way you use afile collection. Y ou can also visit the contents of the tree, and
select a sub-tree using Ant-style patterns:

Example 19.6. Using afiletree
bui |l d. gradl e

/[l lterate over the contents of a tree
tree.each {File file ->
println file

}

/Il Filter a tree
FileTree filtered = tree. matching {
i ncl ude 'org/gradl e/ api/**'

}

/1l Add trees together
FileTree sum= tree + fileTree(dir: 'src/test")

/'l Visit the elements of the tree
tree.visit {element ->
println "$el enent.rel ati vePath => $el ement.file"

}

Page 145 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.util.Map)

19.4. Using the contents of an archive asafile
tree

You can use the contents of an archive, such as a ZIP or TAR file, as afile tree. You do this using the
Project.zipTree(java.lang. Object) and Project.tarTree(java.lang. Object)
methods. These methods return a Fi | eTr ee instance which you can use like any other file tree or file
collection. For example, you can use it to expand the archive by copying the contents, or to merge some
archivesinto another.

Example 19.7. Using an archive asafiletree
bui |l d. gradl e

/Il Create a ZIP file tree using path
FileTree zip = zi pTree(' soneFile.zip")

/'l Create a TAR file tree using path
FileTree tar = tarTree(' soneFile.tar")

//tar tree attenpts to guess the conpression based on the file extension
/I however if you nmust specify the conpression explicitly you can
Fil eTree soneTar = tarTree(resources.gzi p(' soneTar.ext'))

19.5. Specifying a set of input files

Many objects in Gradle have properties which accept a set of input files. For example, the JavaConpi | e
task has a sour ce property, which defines the source files to compile. You can set the value of this
property using any of the types supported by the files() method, which was shown above. This means you
can set the property using, for example, a Fi | e, Stri ng, collection, Fi | eCol | ecti on or even a
closure. Here are some examples:

Usually, there is a method with the same name as the property, which appends to the set of files. Again, this
method accepts any of the types supported by the files() method.

Page 146 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html

Example 19.8. Specifying a set of files
bui | d. gradl e
task conpil e(type: JavaConpil e)

/Il Use a File object to specify the source directory
conpil e {
source = file('src/main/java')

}

/]l Use a String path to specify the source directory

conpile {
source = 'src/nmain/java'

}

/]l Use a collection to specify nultiple source directories

conpile {
source = ['src/main/java', '../shared/java']

}

/Il Use a FileCollection (or FileTree in this case) to specify the source files
conpile {
sour ce fileTree(dir: '"src/main/java').matching { include 'org/gradle/api/

}

/'l Using a closure to specify the source files.
conpil e {
source = {
/'l Use the contents of each zip file in the src dir
file('src').listFiles().findAll {it.name.endsWth('.zip')}.collect { zi(

bui |l d. gradl e
conpile {
/'l Add sonme source directories use String paths

source 'src/main/java', 'src/main/groovy'

/1 Add a source directory using a File object

source file('../shared/java')

/] Add some source directories using a closure
source { file('src/test/").listFiles() }

19.6. Copying files

You can use the Copy task to copy files. The copy task is very flexible, and alows you to, for example,
filter the contents of the files as they are copied, and map to the file names.

To use the Copy task, you must provide a set of source files to copy, and a destination directory to copy the
files to. You may also specify how to transform the files as they are copied. You do al this using a copy
spec. A copy spec is represented by the Copy Spec interface. The Copy task implements this interface.

Page 147 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.Copy.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/file/CopySpec.html

Y ou specify the source files using the CopySpec. fron{j ava. | ang. Obj ect[]) method. To specify
the destination directory, use the Copy Spec. i nt o(j ava. | ang. Qbj ect) method.

Example 19.9. Copying files using the copy task
bui |l d. gradl e

task copyTask(type: Copy) {
from' src/ mai n/ webapp'

into 'buil d/ expl odedWar'

Thefrom() method accepts any of the arguments that the files() method does. When an argument resolves
to a directory, everything under that directory (but not the directory itself) is recursively copied into the
destination directory. When an argument resolves to afile, that file is copied into the destination directory.
When an argument resolves to a non-existing file, that argument is ignored. If the argument is a task, the
output files (i.e. the files the task creates) of the task are copied and the task is automatically added as a
dependency of the Copy task. Thei nt o() accepts any of the arguments that the file() method does. Here
is another example:

Example 19.10. Specifying copy task sour ce files and destination directory
bui |l d. gradl e

t ask anot her CopyTask(type: Copy) {
/| Copy everything under src/main/webapp
from' src/nai n/ webapp'
/1 Copy a single file
from ' src/stagi ng/index. htm'
/'l Copy the output of a task
from copyTask
/| Copy the output of a task using Task outputs explicitly.
from copyTaskW t hPat t er ns. out put s
/1l Copy the contents of a Zip file
from zi pTree(' src/ mai n/ assets. zip')
/| Determne the destination directory |ater
into { getDestDir() }

Y ou can select the files to copy using Ant-style include or exclude patterns, or using a closure:

Example 19.11. Selecting the files to copy
bui | d. gradl e

task copyTaskWthPatterns(type: Copy) {
from' src/nai n/ webapp'
into 'buil d/ expl odedWar'
include "**/* htm"'

include '**/*. |sp'
exclude { details -> details.file.nane.endsWth('.htnml') &&
details.file.text.contains(' staging') }

You can also use the Pr oj ect . copy(org. gradl e. api . Acti on) method to copy files. It works the

Page 148 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/file/CopySpec.html#from(java.lang.Object[])
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/file/CopySpec.html#into(java.lang.Object)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copy(org.gradle.api.Action)

same way as the task with some major limitations though. First, the copy() is not incremental (see
Section 18.9, “Up-to-date checks (AKA Incremental Build)”).

Example 19.12. Copying files using the copy() method without up-to-date check

bui | d. gradl e

task copyMet hod {
doLast {
copy {
from ' src/ mai n/ webapp
into 'buil d/ expl odedWar'

include "**/* htm"
include '**/*. |sp'

Secondly, the copy () method can not honor task dependencies when atask is used as a copy source (i.e. as
an argument to f r om()) because it's a method and not a task. As such, if you are using the copy()

method as part of atask action, you must explicitly declare all inputs and outputs in order to get the correct
behavior.

Example 19.13. Copying files using the copy() method with up-to-date check
bui |l d. gradl e

task copyMet hodW t hExpl i ci t Dependenci es{
/'l up-to-date check for inputs, plus add copyTask as dependency
i nputs.file copyTask
outputs.dir 'sonme-dir' // up-to-date check for outputs
doLast {

copy {

/| Copy the output of copyTask
from copyTask
into 'sone-dir'

It is preferable to use the Copy task wherever possible, as it supports incremental building and task
dependency inference without any extra effort on your part. The copy() method can be used to copy files
as part of atask's implementation. That is, the copy method is intended to be used by custom tasks (see
Chapter 39, Writing Custom Task Classes) that need to copy files as part of their function. In such a
scenario, the custom task should sufficiently declare the inputs/outputs relevant to the copy action.

Page 149 of 605

19.6.1. Renaming files

Example 19.14. Renaming files asthey are copied
bui |l d. gradl e

task rename(type: Copy) {
from ' src/ main/ webapp'
into 'buil d/ expl odedWar'
/'l Use a closure to map the file nane
rename { String fil eName ->

fil eNanme.repl ace(' -staging-', '")
}
/'l Use a regul ar expression to map the file nane
rename ' (.+)-staging-(.+)", '$1$2'
renane(/ (.+)-staging-(.+)/, '$1$2")

19.6.2. Filtering files

Example 19.15. Filtering files as they ar e copied
bui |l d. gradl e

i nport org.apache.tools.ant.filters.FixCrLfFilter
i nport org.apache.tools.ant.filters. Repl aceTokens

task filter(type: Copy) {
from ' src/ main/ webapp'
into 'buil d/ expl odedWar'
/'l Substitute property tokens in files
expand(copyright: '2009', version: '2.3.1")
expand(proj ect. properties)
/'l Use sone of the filters provided by Ant
filter(FixCrLfFilter)

filter(Repl aceTokens, tokens: [copyright: '2009', version: '2.3.1'])
/'l Use a closure to filter each |ine
filter { String line ->

"[$line]"

}

/1l Use a closure to renove |ines
filter { String line ->
line.startsWth('-") ? null : line

}

filteringCharset ="

When you use the Repl aceTokens class with the “filter” operation, the result is a template engine that
replaces tokens of the form “ @tokenName@” (the Apache Ant-style token) with a set of given values. The
“expand” operation does the same thing except it treats the source files as Groovy templates in which tokens
take the form “ ${ tokenName} . Be aware that you may need to escape parts of your source files when using
this option, for exampleif it containsliteral “$” or “<%" strings.

It's a good practice to specify the charset when reading and writing the file, using thef i | t eri ngChar set

Page 150 of 605

http://docs.groovy-lang.org/latest/html/api/groovy/text/SimpleTemplateEngine.html

property. If not specified, the VM default charset is used, which might not match with the actual charset of
the files to filter, and might be different from one machine to another.

19.6.3. Using the Copy Spec class

Copy specs form a hierarchy. A copy spec inherits its destination path, include patterns, exclude patterns,
copy actions, name mappings and filters.

Example 19.16. Nested copy specs
bui |l d. gradl e

t ask nestedSpecs(type: Copy) {
into 'buil d/ expl odedWar'
excl ude ' **/*st agi ng*'
from('src/dist') {

include '**/* html'

}
into('libs") {
from configurations. runtine

}

19.7. Using the Sync task

The Sync task extends the Copy task. When it executes, it copies the source files into the destination
directory, and then removes any files from the destination directory which it did not copy. This can be useful
for doing things such as installing your application, creating an exploded copy of your archives, or
maintaining a copy of the project's dependencies.

Here is an example which maintains a copy of the project's runtime dependencies in the bui | d/ I i bs
directory.

Example 19.17. Using the Sync task to copy dependencies

bui | d. gradl e

task |ibs(type: Sync) {
from configurations. runtine

into "$buildDir/libs"

19.8. Creating archives

A project can have as many JAR archives as you want. You can also add WAR, ZIP and TAR archives to
your project. Archives are created using the various archive tasks: Zi p, Tar, Jar, War , and Ear . They all
work the same way, so let'slook at how you create a ZIPfile.

Page 151 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.Sync.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.ear.Ear.html

Example 19.18. Creating a ZI P archive

bui | d. gradl e

apply plugin: 'java'

task zip(type: Zip) {
from'src/dist'

into('libs") {
from configurations. runtine

}

The archive tasks al work exactly the same way as the Copy
task, and implement the same Copy Spec interface. Aswith the

Why are you using

Copy task, you specify the input files using the fron() the Java p| ugi n?

method, and can optionally specify where they end up in the

archive using the i nt o() method. You can filter the contents The Java plugin adds a number
of file, rename files, and al the other things you can do with a of default values for the archive
copy Spec. tasks. You can use the archive
tasks without using the Java
19.8.1. Archive nami ng plugin, if you like. You will
need to provide values for some

The format of pr oj ect Name- ver si on. type is used for additional properties.

generated archive file names. For example:

Example 19.19. Creation of ZIP archive
bui |l d. gradl e
apply plugin: 'java'

version = 1.0

task nyZip(type: Zip) {
from' sonedir'’

}

println nmyZip. archi veNane
println rel ativePath(nyZi p. destinationDir)
println relativePat h(nmyZi p. archi vePat h)

Output of gradl e -qgq nyZip

> gradle -q nyZip

zi pProject-1.0.zip

bui | d/ di stributions

bui | d/ di stributions/zipProject-1.0.zip

Thisadds a Zi p archive task with the name nyZi p which produces ZIP file zi pPr oj ect - 1. 0. zi p. It
is important to distinguish between the name of the archive task and the name of the archive generated by
the archive task. The default name for archives can be changed with the ar chi vesBaseNane project
property. The name of the archive can also be changed at any time later on.

Page 152 of 605

There are anumber of properties which you can set on an archive task. These are listed below in Table 19.1,
“Archive tasks - naming properties’. Y ou can, for example, change the name of the archive:

Example 19.20. Configuration of archivetask - custom archive name

bui |l d. gradl e

apply plugin: 'java'
version = 1.0

task nmyZip(type: Zip) {
from' sonedir'
baseNane = ' cust onNane'

}

println myZip. archi veNane

Outputof gradl e -q nyZip

> gradle -q nmyZip
cust omName- 1. 0. zi p

Y ou can further customize the archive names:

Example 19.21. Configuration of archivetask - appendix & classifier

bui | d. gradl e

apply plugin: 'java'
ar chi vesBaseName = 'gradl e
version = 1.0

task nmyZip(type: Zip) {
appendi x = 'w apper"’
classifier = "src'
from'sonedir'

}

println myZip. archi veNane

Outputof gradl e -q nyZip

> gradle -q nmyZip
gradl e-wr apper-1.0-src. zip

Page 153 of 605

Table 19.1. Archivetasks- naming properties

Property name Type Default value Description
ar chi veNane String baseName-appendi x-ver si on-cl assi fi er Tégbasesi on
If any of these propertiesis empty thetrailing - is file name of
not added to the name. the
generated
archive
archi vePat h File destinationDir/ ar chi veNane The
absolute
path of the
generated
archive.
destinationDir File Depends on the archive type. JARsand WARsgo The

intoproject.buildbDir/libraries.ZIPs directoryto

and TARsgointo proj ect. bui | dDi r/ di st ri bgeretatathe
archiveinto

baseNane String project. name The base
name
portion of
the archive
file name.

appendi x String null The
appendix
portion of
the archive
file name.

version String project.version Theversion
portion of
the archive
file name.

classifier String null The
classifier
portion of
the archive
file name,

ext ensi on String Dependson thearchivetype, and for TAR files, The
the compression typeaswell: zi p,j ar,war ,t ar extension of
,tgzortbz2. the archive
file name.

Page 154 of 605

19.8.2. Sharing content between multiple archives

You can use the Pr oj ect . copySpec(org. gradl e. api . Acti on) method to share content between
archives,

Often you will want to publish an archive, so that it is usable from another project. This processis described
in Chapter 31, Publishing artifacts

Page 155 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:copySpec(org.gradle.api.Action)

20

Using Ant from Gradle

Gradle provides excellent integration with Ant. You can useindividual Ant tasks or entire Ant builds in your
Gradle builds. In fact, you will find that it's far easier and more powerful using Ant tasks in a Gradle build
script, than it is to use Ant's XML format. You could even use Gradle simply as a powerful Ant task
scripting tool.

Ant can be divided into two layers. Thefirst layer isthe Ant language. It provides the syntax for the bui | d. xm
file, the handling of the targets, special constructs like macrodefs, and so on. In other words, everything
except the Ant tasks and types. Gradle understands this language, and allows you to import your Ant bui | d. xni
directly into a Gradle project. Y ou can then use the targets of your Ant build asif they were Gradle tasks.

The second layer of Ant is its wealth of Ant tasks and types, like j avac, copy or j ar . For this layer
Gradle provides integration ssimply by relying on Groovy, and the fantastic Ant Bui | der .

Finally, since build scripts are Groovy scripts, you can always execute an Ant build as an external process.
Y our build script may contain statements like:” ant ¢l ean conpi | e". execut e() . [

You can use Gradle's Ant integration as a path for migrating your build from Ant to Gradle. For example,
you could start by importing your existing Ant build. Then you could move your dependency declarations
from the Ant script to your build file. Finally, you could move your tasks across to your build file, or replace
them with some of Gradle's plugins. This process can be done in parts over time, and you can have a
working Gradle build during the entire process.

20.1. Using Ant tasks and types in your build

In your build script, a property called ant is provided by Gradle. Thisis areference to an Ant Bui | der
instance. This Ant Bui | der isused to access Ant tasks, types and properties from your build script. There
isavery simple mapping from Ant'sbui | d. xm format to Groovy, which is explained below.

Y ou execute an Ant task by calling a method on the Ant Bui | der instance. Y ou use the task name as the
method name. For example, you execute the Ant echo task by calling the ant . echo() method. The
attributes of the Ant task are passed as Map parameters to the method. Below is an example of the echo
task. Notice that we can also mix Groovy code and the Ant task markup. This can be extremely powerful.

Page 156 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/AntBuilder.html

Example 20.1. Using an Ant task
buil d. gradl e

task hello {
doLast {
String greeting = "hello from Ant'

ant . echo(nessage: greeting)

Output of gr adl e hel | o
> gradle hello
chello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total time: 1 secs
Y ou pass nested text to an Ant task by passing it as a parameter of the task method call. In this example, we
pass the message for the echo task as nested text:

Example 20.2. Passing nested text to an Ant task

bui |l d. gradl e

task hello {
doLast {

ant . echo(' hello fromAnt')

}

Output of gradl e hel |l o
> gradle hello
thello
[ant:echo] hello from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

You pass nested elements to an Ant task inside a closure. Nested elements are defined in the same way as
tasks, by calling a method with the same name as the element we want to define.

Page 157 of 605

Example 20.3. Passing nested elementsto an Ant task

bui | d. gradl e

task zip {
doLast {
ant. zi p(destfile: "archive.zip') {
fileset(dir: "src') {
i ncl ude(nane: ' **.xm")

excl ude(name: '**.java')

You can access Ant types in the same way that you access tasks, using the name of the type as the method
name. The method call returns the Ant data type, which you can then use directly in your build script. In the
following example, we create an Ant pat h object, then iterate over the contents of it.

Example 20.4. Using an Ant type
bui |l d. gradl e

task list {
doLast {
def path = ant.path {
fileset(dir: "libs', includes: '"*.jar")

}

path.list().each {
printin it

More information about Ant Bui | der can be found in'Groovy in Action’' 8.4 or at the Groovy Wiki

20.1.1. Using custom Ant tasksin your build

To make custom tasks available in your build, you can usethet askdef (usualy easier) or t ypedef Ant
task, just as you would in abui | d. xml file. You can then refer to the custom Ant task as you would a
built-in Ant task.

Page 158 of 605

http://groovy.codehaus.org/Using+Ant+from+Groovy

Example 20.5. Using a custom Ant task
buil d. gradl e

task check {
doLast {
ant . t askdef (resource: 'checkstyl etask. properties') {
cl asspat h {
fileset(dir: "libs', includes: '"*.jar")

}

}

ant . checkstyl e(config: 'checkstyle.xm") {
fileset(dir: "src')

Y ou can use Gradle's dependency management to assemble the classpath to use for the custom tasks. To do
this, you need to define a custom configuration for the classpath, then add some dependencies to the
configuration. Thisis described in more detail in Section 24.4, “How to declare your dependencies’.

Example 20.6. Declaring the classpath for a custom Ant task
bui |l d. gradl e

configurations {
prmd
}

dependenci es {
pmd group: 'pnd', nane: 'pnd', version: '4.2.5'

}

To use the classpath configuration, use the asPat h property of the custom configuration.

Example 20.7. Using a custom Ant task and dependency management together
bui |l d. gradl e

task check {
doLast {
ant . t askdef (nanme: ' pnd',
cl assname: ' net.sourceforge. pnd. ant . PMDTask' ,
cl asspat h: configurations. pnd. asPat h)
ant . pnd(shortFil enanmes: 'true',
fail onrul eviol ation: 'true',

rulesetfiles: file('pnd-rules.xm").toURI().toString()) {
formatter(type: 'text', toConsole: 'true')
fileset(dir: "src')

Page 159 of 605

20.2. Importing an Ant build

You can use the ant . i nport Bui | d() method to import an Ant build into your Gradle project. When
you import an Ant build, each Ant target is treated as a Gradle task. This means you can manipulate and
execute the Ant targetsin exactly the same way as Gradle tasks.

Example 20.8. Importing an Ant build

bui |l d. gradl e

ant.inportBuild 'build xm"®

buil d. xn

<pr oj ect >
<target name="hello0">
<echo>Hel | o, from Ant </ echo>

</target>
</ pr oj ect >

Output of gr adl e hel | o
> gradle hello
chello
[ant:echo] Hello, from Ant
BUI LD SUCCESSFUL

Total tinme: 1 secs

Y ou can add atask which depends on an Ant target:

Example 20.9. Task that dependson Ant target
bui |l d. gradl e

ant.inportBuild 'build. xm'

task intro(dependsOn: hello) {

doLast {
println 'Hello, from G adle'

}

Output of gradl e intro

> gradle intro

‘hello

[ant:echo] Hello, from Ant
rintro

Hello, from G adl e

BUI LD SUCCESSFUL

Total tinme: 1 secs

Page 160 of 605

Or, you can add behaviour to an Ant target:

Example 20.10. Adding behaviour to an Ant target
bui |l d. gradl e

ant.inportBuild 'build xm"®

hel l o {
doLast {
println 'Hello, from G adl e

}

Output of gr adl e hel | o
> gradle hello
chello
[ant:echo] Hello, from Ant
Hello, from G adle
BUI LD SUCCESSFUL

Total tinme: 1 secs

It isalso possible for an Ant target to depend on a Gradle task:

Example 20.11. Ant target that depends on Gradle task

bui | d. gradl e

ant.inportBuild 'build. xm'

task intro {
doLast {
println 'Hello, from G adl e

}

buil d. xn

<pr oj ect >
<target name="hell o" depends="intro">
<echo>Hel | o, from Ant </ echo>

</target>
</ pr oj ect >

Output of gr adl e hel | o

> gradle hello

intro

Hello, from G adle
thello

[ant: echo] Hello, from Ant

BU LD SUCCESSFUL

Total tinme: 1 secs

Page 161 of 605

Sometimes it may be necessary to “rename” the task generated for an Ant target to avoid a naming collision
with existing Gradle tasks. To do this, use the Ant Bui | der . i nport Bui | d(j ava. | ang. Obj ect,
org. gradl e. api . Transf or ner) method.

Example 20.12. Renaming imported Ant targets

bui | d. gradl e

ant . inportBuild(' build.xm"') { antTarget Nane ->
"a-' + ant Tar get Nane

}

bui I d. xml

<pr oj ect >
<target nanme="hello0">
<echo>Hel | o, from Ant </ echo>

</t arget >
</ pr oj ect >

Output of gradl e a-hell o
> gradle a-hello
ra-hello
[ant:echo] Hello, from Ant
BUI LD SUCCESSFUL

Total tinme: 1 secs

Note that while the second argument to this method should be a Tr ansf or mer , when programming in
Groovy we can simply use a closure instead of an anonymous inner class (or similar) due to Groovy's
support for automatically coercing closures to single-abstract-method types.

20.3. Ant properties and references

There are several ways to set an Ant property, so that the property can be used by Ant tasks. Y ou can set the
property directly on the Ant Bui | der instance. The Ant properties are also available as a Map which you
can change. You can also usethe Ant pr oper t y task. Below are some examples of how to do this.

Example 20.13. Setting an Ant property

bui | d. gradl e

.buildDir = buildDir
.properties.buildDir = buildDr

.properties['buildDir'] = buildDr
.property(name: 'buildDir', |location: buildDir)

buil d. xn

<echo>bui | dDi r = ${bui |l dDi r} </ echo>

Page 162 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/AntBuilder.html#importBuild(java.lang.Object, org.gradle.api.Transformer)
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/Transformer.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html
http://mrhaki.blogspot.ie/2013/11/groovy-goodness-implicit-closure.html

Many Ant tasks set properties when they execute. There are several ways to get the value of these
properties. You can get the property directly from the Ant Bui | der instance. The Ant properties are also
available as aMap. Below are some examples.

Example 20.14. Getting an Ant property
bui | d. xnl

<property nane="ant Prop" value="a property defined in an Ant build"/>

bui | d. gradl e

println ant.antProp
println ant.properties.antProp
println ant.properties['antProp’

There are several waysto set an Ant reference:

Example 20.15. Setting an Ant reference
buil d. gradl e

ant.path(id: 'classpath', location: '"libs")
ant . references. cl asspath = ant. path(location: 'libs")
ant.references[' classpath'] = ant.path(location: 'libs")

bui I d. xml

<path refid="cl asspath"/>

There are several waysto get an Ant reference:

Example 20.16. Getting an Ant reference
bui | d. xm

<pat h id="antPath" |ocation="11bs"/>

bui |l d. gradl e

println ant.references. ant Pat h

println ant.references[' antPath']

20.4. Ant logging

Gradle maps Ant message priorities to Gradle log levels so that messages logged from Ant appear in the
Gradle output. By default, these are mapped as follows:

Page 163 of 605

Table 20.1. Ant message priority mapping

Ant Message Priority GradleLog L evel

VERBOSE DEBUG
DEBUG DEBUG
INFO I NFO
WARN WARN
ERROR ERRCR

20.4.1. Fine tuning Ant logging

The default mapping of Ant message priority to Gradle log level can sometimes be problematic. For
example, there is no message priority that maps directly to the LI FECYCLE log level, which is the default
for Gradle. Many Ant tasks log messages at the INFO priority, which means to expose those messages from
Gradle, a build would have to be run with the log level set to | NFO, potentially logging much more output
than is desired.

Conversely, if an Ant task logs messages at too high of alevel, to suppress those messages would require the
build to be run at a higher log level, such as QUI ET. However, this could result in other, desirable output
being suppressed.

To help with this, Gradle allows the user to fine tune the Ant logging and control the mapping of message
priority to Gradle log level. Thisis done by setting the priority that should map to the default Gradle LI FECYCLE
log level using the Ant Bui | der . set Li f ecycl eLogLevel (java. |l ang. Stri ng) method. When
thisvalueis set, any Ant message logged at the configured priority or above will belogged at least at LI FECYCLE
. Any Ant message logged below this priority will be logged at most at | NFO.

For example, the following changes the mapping such that Ant INFO priority messages are exposed at the LI FEC
log level.

Page 164 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/AntBuilder.html#setLifecycleLogLevel(java.lang.String)

Example 20.17. Fine tuning Ant logging

bui | d. gradl e

ant.lifecycl eLogLevel = "I NFO'

task hello {
doLast {
ant.echo(level: "info", message: "hello frominfo priority!")

}

Output of gr adl e hel | o

> gradle hello

thello

[ant:echo] hello frominfo priority!

BU LD SUCCESSFUL

Total tinme: 1 secs

On the other hand, if thel i f ecycl eLoglLevel was set to ERROR, Ant messages logged at the WARN
priority would no longer be logged at the WARN log level. They would now be logged at the | NFOlevel and
would be suppressed by default.

20.5. APl

The Ant integration is provided by Ant Bui | der .

[9] In Groovy you can execute Strings. To learn more about executing external processes with Groovy have
alook in'Groovy in Action' 9.3.2 or at the Groovy wiki

Page 165 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/AntBuilder.html

21

TheBuild Lifecycle

We said earlier that the core of Gradle is alanguage for dependency based programming. In Gradle terms
this means that you can define tasks and dependencies between tasks. Gradle guarantees that these tasks are
executed in the order of their dependencies, and that each task is executed only once. These tasks form a
Directed Acyclic Graph. There are build tools that build up such a dependency graph as they execute their
tasks. Gradle builds the complete dependency graph before any task is executed. This lies at the heart of
Gradle and makes many things possible which would not be possible otherwise.

Y our build scripts configure this dependency graph. Therefore they are strictly speaking build configuration
scripts.

21.1. Build phases

A Gradle build has three distinct phases.

Initialization
Gradle supports single and multi-project builds. During the initialization phase, Gradle determines which
projects are going to take part in the build, and createsa Pr oj ect instance for each of these projects.

Configuration
During this phase the project objects are configured. The build scripts of all projects which are part of
the build are executed. Gradle 1.4 introduced an incubating opt-in feature called configuration on
demand. In this mode, Gradle configures only relevant projects (see the section called “ Configuration on
demand”).

Execution
Gradle determines the subset of the tasks, created and configured during the configuration phase, to be
executed. The subset is determined by the task name arguments passed to the gradle command and the
current directory. Gradle then executes each of the selected tasks.

21.2. Settingsfile

Beside the build script files, Gradle defines a settings file. The settings file is determined by Gradle via a
naming convention. The default name for thisfileisset ti ngs. gr adl e. Later in this chapter we explain
how Gradle |ooks for a settingsfile.

The settings file is executed during the initialization phase. A multiproject build must haveaset ti ngs. gr adl «
file in the root project of the multiproject hierarchy. It is required because the settings file defines which

Page 166 of 605

http://en.wikipedia.org/wiki/Directed_acyclic_graph
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html

projects are taking part in the multi-project build (see Chapter 25, Multi-project Builds). For a single-project
build, a settings file is optional. Besides defining the included projects, you might need it to add libraries to
your build script classpath (see Chapter 42, Organizing Build Logic). Let's first do some introspection with a
single project build:

Example 21.1. Single project build

settings.gradle

println 'This is executed during the initialization phase.

bui |l d. gradl e

println 'This is executed during the configuration phase.'

task configured {
println 'This is al so executed during the configuration phase.

}

task test {
doLast {
println 'This is executed during the execution phase.'

}

}

task testBoth {
doFi rst {
println 'This is executed first during the execution phase.'
}
doLast {
println 'This is executed |ast during the execution phase.

}

println 'This is executed during the configuration phase as well .’

Output of gr adl e test testBoth

> gradle test testBoth

This is executed during the initialization phase.

This is executed during the configuration phase.

This is also executed during the configuration phase
This is executed during the configuration phase as well.
‘test

This is executed during the execution phase.

:testBoth

This is executed first during the execution phase.

This is executed |last during the execution phase.

BUI LD SUCCESSFUL

Total tinme: 1 secs

For a build script, the property access and method calls are delegated to a project object. Similarly property
access and method calls within the settings file is delegated to a settings object. Look at the Set ti ngs
classin the APl documentation for more information.

Page 167 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.initialization.Settings.html

21.3. Multi-project builds

A multi-project build is a build where you build more than one project during a single execution of Gradle.
Y ou have to declare the projects taking part in the multiproject build in the settings file. There is much more
to say about multi-project buildsin the chapter dedicated to this topic (see Chapter 25, Multi-project Builds).

21.3.1. Project locations

Multi-project builds are always represented by atree with a single root. Each element in the tree represents a
project. A project has a path which denotes the position of the project in the multi-project build tree. In most
cases the project path is consistent with the physical location of the project in the file system. However, this
behavior is configurable. The project tree is created in the setti ngs. gradl e file. By default it is
assumed that the location of the settings file is also the location of the root project. But you can redefine the
location of the root project in the settings file.

21.3.2. Building the tree
In the settings file you can use a set of methods to build the project tree. Hierarchical and flat physical
layouts get special support.

Hierarchical layouts

Example 21.2. Hierar chical layout

settings.gradle

include 'projectl', 'project2:child , 'project3:childl'

The i ncl ude method takes project paths as arguments. The project path is assumed to be equal to the
relative physical file system path. For example, a path 'services:api' is mapped by default to a folder
'services/api’ (relative from the project root). Y ou only need to specify the leaves of the tree. This means that
the inclusion of the path 'services:hotels:api' will result in creating 3 projects: 'services, 'services:hotels' and
'services:hotels.api'.

Flat layouts

Example 21.3. Flat layout
settings.gradle

i ncl udeFl at 'project3', 'projectsd

The i ncl udeFl at method takes directory names as an argument. These directories need to exist as
siblings of the root project directory. The location of these directories are considered as child projects of the
root project in the multi-project tree.

Page 168 of 605

21.3.3. Modifying elements of the project tree

The multi-project tree created in the settings file is made up of so called project descriptors. You can
modify these descriptors in the settings file at any time. To access a descriptor you can do:

Using this descriptor you can change the name, project directory and build file of a project.

Example 21.4. M odification of elements of the project tree

settings.gradle

println rootProject.nanme

println project(':projectA). nane

settings.gradle

root Proj ect.name = 'nain'

project (' :projectA).projectDir = new File(settingsDir, '../ny-project-a')
project (' :projectA). buildFileName = 'projectA gradle'

Look at the Pr oj ect Descri pt or classinthe APl documentation for more information.

21.4. Initialization

How does Gradle know whether to do a single or multiproject build? If you trigger a multiproject build from
adirectory with a settings file, things are easy. But Gradle also allows you to execute the build from within

any subproject taking part in the build. [10] 1 you execute Gradle from within a project withno set t i ngs. gr ac
file, Gradle looksfor aset ti ngs. gr adl e filein the following way:

® |tlooksin adirectory called mast er which hasthe same nesting level as the current dir.

® |f not found yet, it searches parent directories.

¢ |f not found yet, the build is executed as a single project build.

® |[fasettings. gradl e fileisfound, Gradle checks if the current project is part of the multiproject
hierarchy defined in the found set t i ngs. gr adl e file. If not, the build is executed as a single project
build. Otherwise a multiproject build is executed.

What is the purpose of this behavior? Gradle needs to determine whether the project you are in is a
subproject of a multiproject build or not. Of course, if it is a subproject, only the subproject and its
dependent projects are built, but Gradle needs to create the build configuration for the whole multiproject
build (see Chapter 25, Multi-project Builds). Y ou can use the - u command line option to tell Gradle not to
look in the parent hierarchy for aset ti ngs. gr adl e file. The current project is then aways built as a
single project build. If the current project contains a setti ngs. gradl e file, the - u option has no
meaning. Such abuild is always executed as:

® asingle project build, if theset t i ngs. gr adl e file does not define a multiproject hierarchy
* amultiproject build, if theset t i ngs. gr adl e file does define a multiproject hierarchy.

The automatic search for aset ti ngs. gradl e file only works for multi-project builds with a physical
hierarchical or flat layout. For a flat layout you must additionally follow the naming convention described

Page 169 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/initialization/ProjectDescriptor.html

above (“mast er”). Gradle supports arbitrary physical layouts for a multiproject build, but for such
arbitrary layouts you need to execute the build from the directory where the settings file is located. For
information on how to run partial builds from the root see Section 25.4, “Running tasks by their absolute
path”.

Gradle creates a Project object for every project taking part in the build. For a multi-project build these are
the projects specified in the Settings object (plus the root project). Each project object has by default a name
equal to the name of its top level directory, and every project except the root project has a parent project.
Any project may have child projects.

21.5. Configuration and execution of asingle
project build

For asingle project build, the workflow of the after initialization phases are pretty ssmple. The build script
is executed against the project object that was created during the initialization phase. Then Gradle looks for
tasks with names equal to those passed as command line arguments. If these task names exist, they are
executed as a separate build in the order you have passed them. The configuration and execution for
multi-project buildsis discussed in Chapter 25, Multi-project Builds.

21.6. Responding to the lifecycle in the build
script
Your build script can receive notifications as the build progresses through its lifecycle. These notifications
generally take two forms: You can either implement a particular listener interface, or you can provide a

closure to execute when the notification is fired. The examples below use closures. For details on how to use
the listener interfaces, refer to the APl documentation.

21.6.1. Project evaluation

You can receive a notification immediately before and after a project is evaluated. This can be used to do
things like performing additional configuration once al the definitions in a build script have been applied, or
for some custom logging or profiling.

Below is an example which adds at est task to each project which has a hasTest s property value of
true.

Page 170 of 605

Example 21.5. Adding of test task to each project which has certain property set

bui | d. gradl e

al | projects {
afterEvaluate { project ->
if (project.hasTests) {
println "Adding test task to $project”
project.task('test') {
doLast {

println "Running tests for $project"

}

proj ectA gradle

hasTests = true

Output of gradl e -qg test

> gradle -q test
Addi ng test task to project ':projectA
Running tests for project ':projectA

This example uses method Pr oj ect . af t er Eval uat e() to add a closure which is executed after the
project is evaluated.

It is also possible to receive notifications when any project is evaluated. This example performs some
custom logging of project evaluation. Notice that the af t er Pr oj ect notification is received regardless of
whether the project evaluates successfully or fails with an exception.

Example 21.6. Notifications

bui |l d. gradl e

gradl e. afterProj ect {project, projectState ->
if (projectState.failure) {
println "Eval uati on of $project FAILED'
} else {

println "Eval uati on of $project succeeded"

}

Output of gradl e -qg test
> gradle -q test
Eval uation of root project 'buil dProjectEval uateEvents' succeeded

Eval uation of project ':projectA succeeded
Eval uation of project ':projectB FAILED

You can aso add aPr oj ect Eval uati onLi st ener tothe Gr adl e to receive these events.

Page 171 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html

21.6.2. Task creation

You can receive a notification immediately after a task is added to a project. This can be used to set some
default values or add behaviour before the task is made available in the build file.

The following example setsthe sr cDi r property of each task asit is created.

Example 21.7. Setting of certain property to all tasks

bui | d. gradl e

t asks. whenTaskAdded { task ->
task.ext.srcDir = 'src/main/java

}

task a

println "source dir is $a.srcDr"

Outputof gradle -q a

> gradle -q a
source dir is src/main/java

Youcan asoadd an Act i on toaTaskCont ai ner to receive these events.

21.6.3. Task execution graph ready

Y ou can receive a notification immediately after the task execution graph has been populated. We have seen
this already in Section 15.13, “ Configure by DAG”.

You can also add a TaskExecut i onG aphLi st ener tothe TaskExecut i onG aph to receive these
events.

21.6.4. Task execution

Y ou can receive a notification immediately before and after any task is executed.

The following example logs the start and end of each task execution. Notice that the af t er Task
notification is received regardless of whether the task completes successfully or fails with an exception.

Page 172 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/Action.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/TaskContainer.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

Example 21.8. Logging of start and end of each task execution
buil d. gradl e

task ok

t ask broken(dependsOn: ok) ({
doLast {
t hr ow new Runti neException(' broken")
}
}

gradl e. t askGr aph. bef oreTask { Task task ->
println "executing $task ..."

}

gradl e.taskGraph. after Task { Task task, TaskState state ->
if (state.failure) {
println "FAl LED'

}
el se {
println "done"

}

Output of gradl e - g broken

> gradle -q broken
executing task ':ok'
done

executing task ':broken'
FAI LED

YoucanasouseaTaskExecut i onLi st ener tothe TaskExecut i onG aph to receive these events.

[10] Gradle supports partial multiproject builds (see Chapter 25, Multi-project Builds).

Page 173 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/execution/TaskExecutionGraph.html

22

Wrapper Plugin

The wrapper plugin is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The Gradle wrapper plugin alows the generation of Gradle wrapper files by adding a W apper task, that
generates al files needed to run the build using the Gradle Wrapper. Details about the Gradle Wrapper can
be found in Chapter 5, The Gradle Wrapper.

22.1. Usage

Without modifying the bui | d. gr adl e file, the wrapper plugin can be auto-applied to the root project of
the current build by running “gr adl e wr apper ” from the command line. This applies the plugin if no
task named wr apper isaready defined in the build.

22.2. Tasks

The wrapper plugin adds the following tasks to the project:

Table22.1. Wrapper plugin - tasks

Task name Dependson Type Description

wr apper - W apper Generates Gradle wrapper files.

Page 174 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

23

L ogging

Thelog isthe main 'Ul' of abuild tool. If it is too verbose, real warnings and problems are easily hidden by
this. On the other hand you need relevant information for figuring out if things have gone wrong. Gradle
defines 6 log levels, as shown in Table 23.1, “Log levels’. There are two Gradle-specific log levels, in
addition to the ones you might normally see. Those levels are QUIET and LIFECYCLE. The latter is the
default, and is used to report build progress.

Table23.1. Log levels

Level Used for
ERROR Error messages
QUIET Important information messages

WARNING Warning messages
LIFECYCLE Progressinformation messages
INFO Information messages
DEBUG Debug messages

23.1. Choosing alog level

Y ou can use the command line switches shown in Table 23.2, “Log level command-line options’ to choose
different log levels. In Table 23.3, “ Stacktrace command-line options” you find the command line switches
which affect stacktrace logging.

Table 23.2. Log level command-line options

Option OutputsLog Levels

no logging options LIFECY CLE and higher
-qor--quiet QUIET and higher

-i or--info INFO and higher

-dor--debug DEBUG and higher (that is, all log messages)

Page 175 of 605

Table 23.3. Stacktrace command-line options
Option Meaning

No stacktrace options No stacktraces are printed to the console in case of abuild error (e.g. a
compile error). Only in case of internal exceptions will stacktraces be
printed. If the DEBUGIog level is chosen, truncated stacktraces are always
printed.

-sor--stacktrace Truncated stacktraces are printed. We recommend this over full
stacktraces. Groovy full stacktraces are extremely verbose (Due to the
underlying dynamic invocation mechanisms. Y et they usually do not
contain relevant information for what has gone wrong in your code.) This
option renders stacktraces for deprecation warnings.

-Sor--full-stacktrackefull stacktraces are printed out. This option renders stacktraces for
deprecation warnings.

23.2. Writing your own log messages

A simple option for logging in your build file is to write messages to standard output. Gradle redirects
anything written to standard output to it's logging system at the QUI ET log level.
Example 23.1. Using stdout to write log messages

bui |l d. gradl e

println ' A nmessage which is | ogged at QU ET | evel"'

Gradle also provides al ogger property to a build script, which is an instance of Logger . This interface
extends the SLF4J Logger interface and adds a few Gradle specific methods to it. Below is an example of
how thisisused in the build script:

Example 23.2. Writing your own log messages

bui |l d. gradl e

| ogger.quiet(' An info | og nmessage which is always | ogged. ")
| ogger.error(' An error | og nessage.')

| ogger.warn(' A warni ng | og nessage. ')

| ogger.lifecycle(' Alifecycle info | og nessage.')

| ogger.info(' An info | og nessage.')
| ogger. debug(' A debug | og nessage. ')
| ogger.trace(' A trace | og nessage. ')

Y ou can also hook into Gradle's logging system from within other classes used in the build (classes from the
bui | dSr ¢ directory for example). Simply use an SLF4J logger. Y ou can use this logger the same way as
you use the provided logger in the build script.

Page 176 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/logging/Logger.html

Example 23.3. Using SL F4J to write log messages
buil d. gradl e

i nport org.slf4j.Logger
i nport org.slf4j.LoggerFactory

Logger sl f4jLogger = LoggerFactory. getlLogger (' sonme-| ogger')
sl f4j Logger.info(' An info | og nessage | ogged using SLF4j")

23.3. Logging from external tools and libraries

Internally, Gradle uses Ant and Ivy. Both have their own logging system. Gradle redirects their logging
output into the Gradle logging system. There is a 1:1 mapping from the Ant/lvy log levels to the Gradle log
levels, except the Ant/lvy TRACE log level, which is mapped to Gradle DEBUG log level. This means the
default Gradle log level will not show any Ant/lvy output unlessit isan error or awarning.

There are many tools out there which still use standard output for logging. By default, Gradle redirects
standard output to the QUI ET log level and standard error to the ERROR level. This behavior is
configurable. The project object provides a Loggi nhgManager , which allows you to change the log levels
that standard out or error are redirected to when your build script is evaluated.

Example 23.4. Configuring standard output capture

bui |l d. gradl e

| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO

println ' A nessage which is | ogged at | NFO | evel"'

To change the log level for standard out or error during task execution, tasks also provide a
Loggi ngManager .

Example 23.5. Configuring standard output capturefor atask

bui |l d. gradl e

task | oglnfo {
| oggi ng. capt ur eSt andar dCut put LogLevel . | NFO
doFirst {
println ' A task nessage which is | ogged at | NFO | evel'

}

Gradle aso provides integration with the Java Util Logging, Jakarta Commons Logging and Log4j logging
toolkits. Any log messages which your build classes write using these logging toolkits will be redirected to
Gradle'slogging system.

Page 177 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/logging/LoggingManager.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/logging/LoggingManager.html

23.4. Changing what Gradle logs

Y ou can replace much of Gradle's logging Ul with your own. Y ou might do this, for example, if you want to
customize the Ul in some way - to log more or less information, or to change the formatting. Y ou replace
the logging using the Gr adl e. uselLogger (j ava. | ang. Obj ect) method. Thisis accessible from a
build script, or an init script, or via the embedding API. Note that this completely disables Gradl€e's default
output. Below is an example init script which changes how task execution and build completion islogged.

Example 23.6. Customizing what Gradle logs
init.gradle
uselLogger (new Cust omEvent Logger ())
cl ass CustonEvent Logger extends Buil dAdapter inplenents TaskExecuti onLi stener {

public voi d beforeExecute(Task task) ({
println "[$task. nane] "

}

public void afterExecute(Task task, TaskState state) ({
println()

}

public void buil dFi ni shed(Buil dResult result) {
println "build conpleted
if (result.failure '= null) {
result.failure.printStackTrace()

Outputof gradle -1 init.gradle build
> gradle -1 init.gradle build
[conpi |l e]

conpi I i ng source

[test Conpil e]
conpi ling test source

[test]
running unit tests

[bui | d]

buil d conpl et ed

Your logger can implement any of the listener interfaces listed below. When you register alogger, only the
logging for the interfaces that it implements is replaced. Logging for the other interfaces is left untouched.
Y ou can find out more about the listener interfaces in Section 21.6, “Responding to the lifecycle in the build
script”.

® Bui |l dLi st ener

Page 178 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.invocation.Gradle.html#org.gradle.api.invocation.Gradle:useLogger(java.lang.Object)
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/BuildListener.html

Pr oj ect Eval uati onLi st ener
TaskExecuti onG aphLi st ener
TaskExecuti onLi st ener
TaskAct i onLi st ener

Page 179 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/ProjectEvaluationListener.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/execution/TaskExecutionGraphListener.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/execution/TaskExecutionListener.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/execution/TaskActionListener.html

24

Dependency M anagement

24.1. Introduction

Dependency management is a critical feature of every build, and Gradle has placed an emphasis on offering
first-class dependency management that is both easy to understand and compatible with a wide variety of
approaches. If you are familiar with the approach used by either Maven or Ivy you will be delighted to learn
that Gradle is fully compatible with both approaches in addition to being flexible enough to support
fully-customized approaches.

Here are the mgjor highlights of Gradle's support for dependency management:

¢ Transitive dependency management: Gradle gives you full control of your project's dependency tree.

® Support for non-managed dependencies: If your dependencies are smply files in version control or a
shared drive, Gradle provides powerful functionality to support this.

* Support for custom dependency definitions.: Gradle's Module Dependencies give you the ability to
describe the dependency hierarchy in the build script.

* A fully customizable approach to Dependency Resolution: Gradle provides you with the ability to
customize resolution rules making dependency substitution easy.

¢ Full Compatibility with Maven and lvy: If you have defined dependencies in a Maven POM or an lvy
file, Gradle provides seamless integration with a range of popular build tools.

* |ntegration with existing dependency management infrastructure: Gradle is compatible with both Maven
and lvy repositories. If you use Archiva, Nexus, or Artifactory, Gradle is 100% compatible with all
repository formats.

With hundreds of thousands of interdependent open source components each with a range of versions and
incompatibilities, dependency management has a habit of causing problems as builds grow in complexity.
When a build's dependency tree becomes unwieldy, your build tool shouldn't force you to adopt a single,
inflexible approach to dependency management. A proper build system has to be designed to be flexible,
and Gradle can handle any situation.

Page 180 of 605

24.1.1. Flexible dependency management for migrations

Dependency management can be particularly challenging during a migration from one build system to
another. If you are migrating from atool like Ant or Maven to Gradle, you may be faced with some difficult
situations. For example, one common pattern is an Ant project with version-less jar files stored in the
filesystem. Other build systems require a wholesale replacement of this approach before migrating. With
Gradle, you can adapt your new build to any existing source of dependencies or dependency metadata. This
makes incremental migration to Gradle much easier than the aternative. On most large projects, build
migrations and any change to development process is incremental because most organizations can't afford to
stop everything and migrate to a build tool's idea of dependency management.

Even if your project is using a custom dependency management system or something like an Eclipse
.Classpath file as master data for dependency management, it is very easy to write a Gradle plugin to use this
data in Gradle. For migration purposes this is a common technique with Gradle. (But, once you've migrated,
it might be a good idea to move away from a .classpath file and use Gradl€e's dependency management
features directly.)

24.1.2. Dependency management and Java

It isironic that in alanguage known for itsrich library of open source components that Java has no concept
of libraries or versions. In Java, there is no standard way to tell the VM that you are using version 3.0.5 of
Hibernate, and there is no standard way to say that f oo- 1. 0. j ar depends on bar - 2. 0. j ar. This has
led to external solutions often based on build tools. The most popular ones at the moment are Maven and
Ivy. While Maven provides a complete build system, Ivy focuses solely on dependency management.

Both tools rely on descriptor XML files, which contain information about the dependencies of a particular
jar. Both also use repositories where the actual jars are placed together with their descriptor files, and both
offer resolution for conflicting jar versions in one form or the other. Both have emerged as standards for
solving dependency conflicts, and while Gradle originally used Ivy under the hood for its dependency
management. Gradle has replaced this direct dependency on Ivy with a native Gradle dependency resolution
engine which supports a range of approaches to dependency resolution including both POM and lvy
descriptor files.

24.2. Dependency Management Best Practices

While Gradle has strong opinions on dependency management, the tool gives you a choice between two
options: follow recommended best practices or support any kind of pattern you can think of. This section
outlines the Gradle project's recommended best practices for managing dependencies.

No matter what the language, proper dependency management is important for every project. From a
complex enterprise application written in Java depending on hundreds of open source libraries to the
simplest Clojure application depending on a handful of libraries, approaches to dependency management
vary widely and can depend on the target technology, the method of application deployment, and the nature
of the project. Projects bundled as reusable libraries may have different requirements than enterprise
applications integrated into much larger systems of software and infrastructure. Despite this wide variation
of requirements, the Gradle project recommends that all projects follow this set of core rules:

Page 181 of 605

24.2.1. Put the Version in the Filename (Version the jar)

The version of alibrary must be part of the filename. While the version of ajar is usually in the Manifest
file, it isn't readily apparent when you are inspecting a project. If someone asks you to look at a collection of
20 jar files, which would you prefer? A collection of fileswith nameslike cormons- beanutil s-1. 3. ar
or a collection of files with names like spri ng. j ar ? If dependencies have file names with version
numbers you can quickly identify the versions of your dependencies.

If versions are unclear you can introduce subtle bugs which are very hard to find. For example there might
be a project which uses Hibernate 2.5. Think about a developer who decides to install version 3.0.5 of
Hibernate on her machine to fix a critical security bug but forgets to notify othersin the team of this change.
She may address the security bug successfully, but she also may have introduced subtle bugs into a codebase
that was using a now-deprecated feature from Hibernate. Weeks later there is an exception on the integration
machine which can't be reproduced on anyone's machine. Multiple developers then spend days on this issue
only finally realising that the error would have been easy to uncover if they knew that Hibernate had been
upgraded from 2.5t0 3.0.5.

Versions in jar names increase the expressiveness of your project and make them easier to maintain. This
practice also reduces the potential for error.

24.2.2. Manage transitive dependencies

Transitive dependency management is a technique that enables your project to depend on libraries which, in
turn, depend on other libraries. This recursive pattern of transitive dependencies results in a tree of
dependencies including your project's first-level dependencies, second-level dependencies, and so on. If you
don't model your dependencies as a hierarchical tree of first-level and second-level dependenciesit is very
easy to quickly lose control over an assembled mess of unstructured dependencies. Consider the Gradle
project itself, while Gradle only has afew direct, first-level dependencies, when Gradle is compiled it needs
more than one hundred dependencies on the classpath. On a far larger scale, Enterprise projects using
Spring, Hibernate, and other libraries, alongside hundreds or thousands of internal projects, can result in
very large dependency trees.

When these large dependency trees need to change, you'll often have to solve some dependency version
conflicts. Say one open source library needs one version of a logging library and a another uses an
alternative version. Gradle and other build tools al have the ability to resolve conflicts, but what
differentiates Gradleis the control it gives you over transitive dependencies and conflict resolution.

While you could try to manage this problem manually, you will quickly find that this approach doesn't scale.
If you want to get rid of a first level dependency you really can't be sure which other jars you should
remove. A dependency of afirst level dependency might also be afirst level dependency itself, or it might
be a transitive dependency of yet another first level dependency. If you try to manage transitive
dependencies yourself, the end of the story is that your build becomes brittle: no one dares to change your
dependencies because the risk of breaking the build is too high. The project classpath becomes a complete
mess, and, if a classpath problem arises, hell on earth invites you for aride.

NOTE:In one project, we found a mystery LDAP related jar in the classpath. No code referenced this
jar and there was no connection to the project. No one could figure out what the jar was for, until it
was removed from the build and the application suffered massive performance problems whenever it

Page 182 of 605

attempted to authenticate to LDAP. This mystery jar was a necessary transitive, fourth-level
dependency that was easy to miss because ho one had bothered to use managed transitive
dependencies.

Gradle offers you different ways to express first-level and transitive dependencies. With Gradle you can mix
and match approaches; for example, you could store your jars in an SCM without XML descriptor files and
still use transitive dependency management.

24.2.3. Resolve version conflicts

Conflicting versions of the same jar should be detected and either resolved or cause an exception. If you
don't use transitive dependency management, version conflicts are undetected and the often accidental order
of the classpath will determine what version of a dependency will win. On a large project with many
developers changing dependencies, successful builds will be few and far between as the order of
dependencies may directly affect whether a build succeeds or fails (or whether a bug appears or disappears
in production).

If you haven't had to deal with the curse of conflicting versions of jars on a classpath, here is a small
anecdote of the fun that awaits you. In a large project with 30 submodules, adding a dependency to a
subproject changed the order of a classpath, swapping Spring 2.5 for an older 2.4 version. While the build
continued to work, developers were starting to notice all sorts of surprising (and surprisingly awful) bugsin
production. Worse yet, this unintentional downgrade of Spring introduced several security vulnerabilities
into the system, which now required afull security audit throughout the organization.

In short, version conflicts are bad, and you should manage your transitive dependencies to avoid them. You
might also want to learn where conflicting versions are used and consolidate on a particular version of a
dependency across your organization. With a good conflict reporting tool like Gradle, that information can
be used to communicate with the entire organization and standardize on a single version. If you think
version conflicts don't happen to you, think again. It is very common for different first-level dependenciesto
rely on arange of different overlapping versions for other dependencies, and the JVM doesn't yet offer an
easy way to have different versions of the same jar in the classpath (see Section 24.1.2, “Dependency
management and Java’).

Gradle offers the following conflict resolution strategies:

* Newest: The newest version of the dependency is used. Thisis Gradle's default strategy, and is often an
appropriate choice aslong as versions are backwards-compatible.

® Fail: A version conflict resultsin abuild failure. This strategy requires all version conflicts to be
resolved explicitly in the build script. See Resol uti onSt r at egy for details on how to explicitly
choose a particular version.

While the strategies introduced above are usualy enough to solve most conflicts, Gradle provides more
fine-grained mechanisms to resolve version conflicts:

® Configuring afirst level dependency as forced. This approach is useful if the dependency in conflict is
aready afirst level dependency. See examplesin DependencyHandl er .

® Configuring any dependency (transitive or not) as forced. This approach is useful if the dependency in
conflict is atransitive dependency. It also can be used to force versions of first level dependencies. See

Page 183 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

examplesin Resol uti onStr at egy

® Configuring dependency resolution to prefer modules that are part of your build (transitive or not). This
approach is useful if your build contains custom forks of modules (as part of Chapter 25, Multi-project
Builds or asinclude in Chapter 10, Composite builds). See examplesin Resol ut i onStr at egy.

* Dependency resolve rules are an incubating feature introduced in Gradle 1.4 which give you fine-grained
control over the version selected for a particular dependency.

To deal with problems due to version conflicts, reports with dependency graphs are also very helpful. Such
reports are another feature of dependency management.

24.2.4. Use Dynamic Versions and Changing Modules

There are many situations when you want to use the latest version of a particular dependency, or the latest in
arange of versions. This can be a requirement during development, or you may be developing a library that
is designed to work with a range of dependency versions. You can easily depend on these constantly
changing dependencies by using a dynamic version. A dynamic version can be either aversion range (e.g. 2. +
) or it can be a placeholder for the latest version available (e.g. | at est . i nt egrati on).

Alternatively, sometimes the module you request can change over time, even for the same version. An
example of this type of changing module is a Maven SNAPSHOT module, which always points at the latest
artifact published. In other words, a standard Maven snapshot is a module that never stands still so to speak,
itisa*“changing module”.

The main difference between a dynamic version and a changing module is that when you resolve a dynamic
version, you'll get the real, static version as the module name. When you resolve a changing module, the
artifacts are named using the version you requested, but the underlying artifacts may change over time.

By default, Gradle caches dynamic versions and changing modules for 24 hours. You can override the
default cache modes using command line options. You can change the cache expiry times in your build
using the resolution strategy (see Section 24.9.3, “Fine-tuned control over dependency caching”).

24.3. Dependency configurations

In Gradle dependencies are grouped into configurations. Configurations have a name, a number of other
properties, and they can extend each other. Many Gradle plugins add pre-defined configurations to your
project. The Java plugin, for example, adds some configurations to represent the various classpaths it needs.
see Section 46.5, “ Dependency management” for details. Of course you can add custom configurations on
top of that. There are many use cases for custom configurations. This is very handy for example for adding
dependencies not needed for building or testing your software (e.g. additional JDBC drivers to be shipped
with your distribution).

A project's configurations are managed by a conf i gur ati ons object. The closure you pass to the
configurations object is applied against its API. To learn more about this APl have a look at
Confi gur ati onCont ai ner .

To define a configuration:

Page 184 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ConfigurationContainer.html

Example 24.1. Definition of a configuration

bui | d. gradl e

configurations {

conpil e
}

To access a configuration;

Example 24.2. Accessing a configuration
bui |l d. gradl e

println configurations. conpile. name
println configurations['conpile'].name

To configure a configuration:

Example 24.3. Configuration of a configuration
bui |l d. gradl e

configurations {
conpil e {
description = 'conpile classpath’
transitive = true
}
runtime {
ext endsFrom conpi |l e

}

}

configurations. conpile {
description = 'conpile classpath’

}

24.4. How to declare your dependencies

There are several different types of dependencies that you can declare:

Page 185 of 605

Table 24.1. Dependency types

Type Description

External module dependency A dependency on an external module in some repository.

Project dependency A dependency on another project in the same build.
File dependency A dependency on aset of files on the local filesystem.
Client module dependency A dependency on an external module, where the artifacts are located in

some repository but the module meta-data is specified by the local
build. Y ou use this kind of dependency when you want to override the
meta-data for the module.

Gradle API dependency A dependency on the API of the current Gradle version. Y ou use this
kind of dependency when you are developing custom Gradle plugins
and task types.

Local Groovy dependency A dependency on the Groovy version used by the current Gradle
version. You use this kind of dependency when you are developing
custom Gradle plugins and task types.

24.4.1. External module dependencies

External module dependencies are the most common dependencies. They refer to a module in an external
repository.

Example 24.4. M odule dependencies
bui |l d. gradl e

dependenci es {
runtime group: 'org.springfranework', name: 'spring-core', version: '2.5
runtime 'org.springfranmework: spring-core:2.5",
" org. springframework: spring-aop: 2. 5'
runti me(
[group: 'org.springfranework', name: 'spring-core', version: '2.5],
[group: 'org.springfranework', name: 'spring-aop', version: '2.5']
)
runti me(' org. hi bernate: hi bernate: 3.0.5") {
transitive = true
}
runtime group: 'org.hibernate', name: 'hibernate', version: '3.
runti me(group: 'org.hibernate', name: 'hibernate', version: '3.
transitive = true

0.
0.

}

See the DependencyHandl er class in the APl documentation for more examples and a complete
reference.

Gradle provides different notations for module dependencies. There is a string notation and a map notation.
A module dependency has an APl which allows further configuration. Have a look at

Ext er nal Modul eDependency to learn all about the API. This APl provides properties and
configuration methods. Via the string notation you can define a subset of the properties. With the map

Page 186 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ExternalModuleDependency.html

notation you can define all properties. To have access to the complete API, either with the map or with the
string notation, you can assign a single dependency to a configuration together with a closure.

If you declare a module dependency, Gradle looks for a module descriptor file (pom xm ori vy. xm) in

the repositories. If such a module descriptor file exists, it is parsed and the artifacts of thismodule (e.g. hi ber nat
) as well as its dependencies (e.g. cglib) are downloaded. If no such module descriptor file exists, Gradle
looks for afile called hi ber nat e- 3. 0. 5. j ar to retrieve. In Maven, a module can have one and only

one artifact. In Gradle and Ivy, a module can have multiple artifacts. Each artifact can have a different set of
dependencies.

Depending on modules with multiple artifacts

As mentioned earlier, a Maven module has only one artifact. Hence, when your project depends on aMaven
module, it's obvious what its artifact is. With Gradle or Ivy, the case is different. Ivy's dependency descriptor
(i vy. xm) can declare multiple artifacts. For more information, see the Ivy referencefor i vy. xm . In
Gradle, when you declare a dependency on an Ivy module, you actually declare a dependency on the def aul t
configuration of that module. So the actual set of artifacts (typically jars) you depend onis the set of
artifacts that are associated with the def aul t configuration of that module. Here are some situations where
this matters:
* Thedef aul t configuration of a module contains undesired artifacts. Rather than depending on the
whole configuration, a dependency on just the desired artifacts is declared.
* Thedesired artifact belongs to a configuration other than def aul t . That configuration is explicitly
named as part of the dependency declaration.

There are other situations where it is hecessary to fine-tune dependency declarations. Please see the
DependencyHandl er classinthe APl documentation for examples and a complete reference for
declaring dependencies.

Artifact only notation

As said above, if no module descriptor file can be found, Gradle by default downloads a jar with the name of
the module. But sometimes, even if the repository contains module descriptors, you want to download only
the artifact jar, without the dependencies. [11] And sometimes you want to download a zip from arepository,
that does not have module descriptors. Gradle provides an artifact only notation for those use cases - simply
prefix the extension that you want to be downloaded with' @ sign:

Example 24.5. Artifact only notation

bui | d. gradl e

dependenci es {
runti me "org.groovy:groovy:2.2. 0@ar"

runti me group: 'org.groovy', name: 'groovy', version: '2.

An artifact only notation creates a module dependency which downloads only the artifact file with the
specified extension. Existing module descriptors are ignored.

Page 187 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

Classifiers

The Maven dependency management has the notion of classifiers. (12 Gradle supports this. To retrieve
classified dependencies from a Maven repository you can write:

Example 24.6. Dependency with classifier

bui | d. gradl e

conpile "org.gradle.test.classifiers:service:1.0:jdkl5@ar"

ot her Conf group: 'org.gradle.test.classifiers', nane: 'service', version: '1.0",

As can be seen in thefirst line above, classifiers can be used together with the artifact only notation.
It is easy to iterate over the dependency artifacts of a configuration:

Example 24.7. Iterating over a configuration
bui |l d. gradl e

task listJars {
doLast {
configurations.conpile.each { File file -> println file.nanme }

}

Outputof gradl e -q |istJars

> gradle -q listJars

hi bernate-core-3.6.7.Final.jar
antlr-2.7.6.jar

commons-col | ections-3.1.jar

domdj-1.6.1.jar

hi ber nat e- commons-annotati ons-3.2.0.Final.jar
hi bernate-jpa-2.0-api-1.0.1.Final.jar
jta-1.1.jar

slf4j-api-1.6.1.jar

24.4.2. Client module dependencies

Client module dependencies allow you to declare transitive dependencies directly in the build script. They
are areplacement for amodule descriptor in an external repository.

Page 188 of 605

Example 24.8. Client module dependencies - transitive dependencies
buil d. gradl e

dependenci es {
runti me nodul e("org. codehaus. groovy: groovy: 2. 4. 7") {
dependency(" comons-cli: commons-cli:1.0") {
transitive = fal se

}

nodul e(group: 'org.apache.ant', name: "ant', version: '1.9.6") {
dependenci es "org. apache. ant: ant-1launcher:1.9.6@ar",
"org. apache.ant:ant-junit:1.9.6"

This declares a dependency on Groovy. Groovy itself has dependencies. But Gradle does not look for an
XML descriptor to figure them out but gets the information from the build file. The dependencies of a client
module can be normal module dependencies or artifact dependencies or another client module. Also look at
the API documentation for the Cl i ent Mbdul e class.

In the current release client modules have one limitation. Let's say your project is alibrary and you want this
library to be uploaded to your company's Maven or lvy repository. Gradle uploads the jars of your project to
the company repository together with the XML descriptor file of the dependencies. If you use client modules
the dependency declaration in the XML descriptor fileis not correct. We will improve thisin afuture release
of Gradle.

24.4.3. Project dependencies

Gradle distinguishes between external dependencies and dependencies on projects which are part of the
same multi-project build. For the latter you can declare Project Dependencies.

Example 24.9. Project dependencies
buil d. gradl e

dependenci es {

conpil e project(':shared")

}

For more information see the APl documentation for Pr oj ect Dependency.

Multi-project builds are discussed in Chapter 25, Multi-project Builds.

24.4.4. File dependencies

File dependencies allow you to directly add a set of files to a configuration, without first adding them to a
repository. This can be useful if you cannot, or do not want to, place certain files in arepository. Or if you
do not want to use any repositories at all for storing your dependencies.

To add some files as a dependency for a configuration, you simply pass a file collection as a dependency:

Page 189 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ClientModule.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ProjectDependency.html

Example 24.10. File dependencies

bui | d. gradl e

dependenci es {
runtime files('libs/a.jar', 'libs/b.jar")

runtime fileTree(dir: "libs', include: '"*.jar")

File dependencies are not included in the published dependency descriptor for your project. However, file
dependencies are included in transitive project dependencies within the same build. This means they cannot
be used outside the current build, but they can be used with the same build.

Y ou can declare which tasks produce the files for a file dependency. Y ou might do this when, for example,
the files are generated by the build.

Example 24.11. Gener ated file dependencies
bui |l d. gradl e

dependenci es {
conmpile files("$buildDir/classes") {
builtBy 'conpil e’
}
}

task compile {
doLast {
println 'conpiling classes
}
}

task |ist(dependsOn: configurations.conpile) {
doLast {
println "classpath = ${configurations.conpile.collect { File file -> fi

}

Output of gradl e -qg |i st
> gradle -q list

conpi | i ng cl asses
cl asspath = [cl asses]

24.4.5. Gradle APl Dependency

You can declare a dependency on the APl of the current version of Gradle by using the
DependencyHandl er. gr adl eApi () method. Thisis useful when you are developing custom Gradle
tasks or plugins.

Page 190 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:gradleApi()

Example 24.12. Gradle API dependencies
buil d. gradl e

dependenci es {
conpi | e gradl eApi ()

}

24.4.6. Local Groovy Dependency

You can declare a dependency on the Groovy that is distributed with Gradle by using the
DependencyHandl er. | ocal G- oovy() method. This is useful when you are developing custom
Gradle tasks or pluginsin Groovy.

Example 24.13. Gradle's Groovy dependencies

bui | d. gradl e

dependenci es {

conpi | e | ocal Groovy()

}

24.4.7. Excluding transitive dependencies

Y ou can exclude a transitive dependency either by configuration or by dependency:

Example 24.14. Excluding transitive dependencies
bui |l d. gradl e

configurations {
conpi | e. excl ude nodul e: ' conmons'
al |l *. excl ude group: 'org.gradle.test.excludes', nodule: 'reports’

}

dependenci es {
conpi l e("org. gradl e.test.excludes:api:1.0") {
excl ude nodul e: ' shared’

}

If you define an exclude for a particular configuration, the excluded transitive dependency will be filtered
for all dependencies when resolving this configuration or any inheriting configuration. If you want to
exclude a transitive dependency from all your configurations you can use the Groovy spread-dot operator to
express this in a concise way, as shown in the example. When defining an exclude, you can specify either
only the organization or only the module name or both. Also look at the APl documentation of the
Dependency and Conf i gur ati on classes.

Not every transitive dependency can be excluded - some transitive dependencies might be essential for
correct runtime behavior of the application. Generally, one can exclude transitive dependencies that are
either not required by runtime or that are guaranteed to be available on the target environment/platform.

Page 191 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:localGroovy()
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/Dependency.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.Configuration.html

Should you exclude per-dependency or per-configuration? It turns out that in the majority of cases you want
to use the per-configuration exclusion. Here are some typical reasons why one might want to exclude a
transitive dependency. Bear in mind that for some of these use cases there are better solutions than
exclusions!

® The dependency is undesired due to licensing reasons.

® The dependency is not available in any remote repositories.

® The dependency is not needed for runtime.

® The dependency has a version that conflicts with a desired version. For that use case please refer to
Section 24.2.3, “Resolve version conflicts’ and the documentation on Resol ut i onSt r at egy for a
potentially better solution to the problem.

Basically, in most of the cases excluding the transitive dependency should be done per configuration. This
way the dependency declaration is more explicit. It is also more accurate because a per-dependency exclude
rule does not guarantee the given transitive dependency does not show up in the configuration. For example,
some other dependency, which does not have any exclude rules, might pull in that unwanted transitive
dependency.

Other examples of dependency exclusions can be found in the reference for the Modul eDependency or
DependencyHandl er classes.

24.4.8. Optional attributes

All attributes for a dependency are optional, except the name. Which attributes are required for actually
finding dependencies in the repository will depend on the repository type. See Section 24.6, “Repositories’.
For example, if you work with Maven repositories, you need to define the group, name and version. If you
work with filesystem repositories you might only need the name or the name and the version.

Example 24.15. Optional attributes of dependencies

bui | d. gradl e

dependenci es {
runtime ":junit:4.12", ":testng"

runti me nane: 'testng'

Y ou can aso assign collections or arrays of dependency notations to a configuration:

Example 24.16. Collections and arrays of dependencies

buil d. gradl e

Li st groovy = ["org. codehaus. groovy: groovy-all:2. 4. 7@ar",
"conmons-cli:commons-cli: 1. 0@ar",
"org.apache.ant:ant:1.9.6@ar"]

Li st hi bernate = ['org. hi bernate: hi bernate: 3.0.5@ar",

' sonegroup: soneorg: 1. 0@ar ']

dependenci es {
runtinme groovy, hibernate

}

Page 192 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ModuleDependency.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html

24.4.9. Dependency configurations

In Gradle a dependency can have different configurations (as your project can have different
configurations). If you don't specify anything explicitly, Gradle uses the default configuration of the
dependency. For dependencies from a Maven repository, the default configuration is the only possibility
anyway. If you work with Ivy repositories and want to declare a non-default configuration for your
dependency you have to use the map notation and declare:

Example 24.17. Dependency configurations

bui |l d. gradl e

dependenci es {
runti me group: 'org.sonmegroup', name: 'sonedependency', version: '1.

}

To do the same for project dependencies you need to declare:

Example 24.18. Dependency configurationsfor project
bui |l d. gradl e

dependenci es {

conpile project(path: ':api', configuration: 'spi')

}

24.4.10. Dependency reports

You can generate dependency reports from the command line (see Section 4.7.4, “Listing project
dependencies’). With the help of the Project report plugin (see Chapter 28, The Project Report Plugin) such
areport can be created by your build.

Since Gradle 1.2 there is also a new programmatic API to access the resolved dependency information. The
dependency reports (see the previous paragraph) are using this APl under the covers. The API lets you walk
the resolved dependency graph and provides information about the dependencies. In future releases the API
will grow to provide more information about the resolution result. For more information about the API
please refer to the Javadocs on Resol vabl eDependenci es. get Resol uti onResul t () . Potentia
usages of the Resol uti onResul t API:

® Creation of advanced dependency reports tailored to your use case.
® Enabling the build logic to make decisions based on the content of the dependency graph.

24.5. Working with dependencies

For the examples below we have the following dependencies setup:

Page 193 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ResolvableDependencies.html#getResolutionResult()
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/result/ResolutionResult.html

Example 24.19. Configur ation.copy
buil d. gradl e

configurations {
sealife
alllife

}

dependenci es {
sealife "sea.mammal s: orca: 1. 0", "sea.fish:shark:1.0", "sea.fish:tuna:1.0"
alllife configurations.sealife
alllife "air.birds: al batross: 1. 0"

The dependencies have the following transitive dependencies:

shark-1.0 -> seal-2.0, tuna-1.0

orca-1.0 -> seal-1.0

tuna-1.0 -> herring-1.0

Y ou can use the configuration to access the declared dependencies or a subset of those:

Example 24.20. Accessing declared dependencies
bui |l d. gradl e

t ask dependenci es {
doLast {
configurations.alllife.dependenci es.each { dep -> println dep. nane }
println()
configurations.alllife.all Dependenci es. each { dep -> println dep. nane }

println()
configurations.alllife.all Dependencies.findAll { dep -> dep.nane != "or
.each { dep -> println dep.name }

Output of gr adl e - g dependenci es

> gradl e -q dependenci es
al batross

al batross
orca
shar k
tuna

al bat ross

shark
tuna

The dependenci es task returns only the dependencies belonging explicitly to the configuration. The
al | Dependenci es task includes the dependencies from extended configurations.

Page 194 of 605

To get the library files of the configuration dependencies you can do:

Example 24.21. Configuration.files

bui |l d. gradl e

task allFiles {
doLast {
configurations.sealife.files.each { file ->
printin file.nanme

Outputof gradle -q all Files

> gradle -q all Files
orca-1.0.jar
shark-1.0.jar
tuna-1.0.jar
herring-1.0.jar

seal -2.0.jar

Sometimes you want the library files of a subset of the configuration dependencies (e.g. of a single
dependency).

Example 24.22. Configuration.fileswith spec

bui |l d. gradl e

task files {
doLast {
configurations.sealife.files { dep -> dep.nane == "orca' }.each { file -

println file.nanme

Outputof gradle -q files

> gradle -q files
orca-1.0.jar
seal -2.0.jar

The Confi guration. fil es method always retrieves al artifacts of the whole configuration. It then
filters the retrieved files by specified dependencies. As you can see in the example, transitive dependencies
are included.

You can aso copy a configuration. Y ou can optionally specify that only a subset of dependencies from the
original configuration should be copied. The copying methods come in two flavors. The copy method
copies only the dependencies belonging explicitly to the configuration. The copyRecur si ve method
copies all the dependencies, including the dependencies from extended configurations.

Page 195 of 605

Example 24.23. Configur ation.copy

bui | d. gradl e

task copy {
doLast {
configurations.alllife.copyRecursive { dep -> dep.nanme != "orca' }
. al | Dependenci es. each { dep -> println dep. nanme }

println()
configurations.alllife.copy().all Dependenci es
.each { dep -> println dep. nane }

Output of gradl e -q copy

> gradle -q copy
al batross

shar k

tuna

al bat ross

It is important to note that the returned files of the copied configuration are often but not always the same
than the returned files of the dependency subset of the original configuration. In case of version conflicts
between dependencies of the subset and dependencies not belonging to the subset the resolve result might be
different.

Example 24.24. Configuration.copy vs. Configuration.files

buil d. gradl e

task copyVsFiles {
doLast {
configurations.sealife.copyRecursive { dep -> dep.nane == 'orca' }
.each { file -> println file.name }

println()
configurations.sealife.files { dep -> dep.nane == 'orca' }
.each { file -> println file.nane }

Output of gr adl e -g copyVsFil es

> gradle -q copyVsFiles
orca-1.0.jar
seal-1.0.jar

orca-1.0.jar
seal -2.0.jar

In the example above, or ca has a dependency on seal - 1. 0 whereas shar k has a dependency on
seal - 2. 0. The origina configuration has therefore a version conflict which is resolved to the newer

seal - 2. 0 version. Thef i | es method therefore returns seal - 2. 0 as atransitive dependency ofor ca.
The copied configuration only has or ca as a dependency and therefore there is no version conflict and

seal - 1. 0 isreturned as a transitive dependency.

Page 196 of 605

Once a configuration is resolved it is immutable. Changing its state or the state of one of its dependencies
will cause an exception. Y ou can always copy a resolved configuration. The copied configuration is in the
unresolved state and can be freshly resolved.

To learn more about the API of the configuration class see the APl documentation: Conf i gur ati on.

24.6. Repositories

Gradle repository management, based on Apache Ivy, gives you alot of freedom regarding repository layout
and retrieval policies. Additionally Gradle provides various convenience method to add pre-configured
repositories.

Y ou may configure any number of repositories, each of which is treated independently by Gradle. If Gradle
finds a module descriptor in a particular repository, it will attempt to download al of the artifacts for that
module from the same repository. Although module meta-data and module artifacts must be located in the
same repository, it is possible to compose a single repository of multiple URLS, giving multiple locations to
search for meta-datafilesand jar files.

There are several different types of repositories you can declare:

Table 24.2. Repository types

Type Description
Maven central repository A pre-configured repository that looks for dependenciesin Maven Central.

Maven JCenter repository A pre-configured repository that looks for dependenciesin Bintray's
JCenter.

Maven local repository A pre-configured repository that looks for dependenciesin the local
Maven repository.

Maven repository A Maven repository. Can be located on the local filesystem or at some
remote |ocation.

Ivy repository An vy repository. Can be located on the local filesystem or at some
remote |ocation.

Flat directory repository A simple repository on the local filesystem. Does not support any
meta-data formats.

24.6.1. Maven central repository

To add the central Maven 2 repository (http://repol.maven.org/maven2) simply add this to your build script:

Example 24.25. Adding central Maven repository
bui |l d. gradl e

repositories {
mavenCentral ()

}

Page 197 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.Configuration.html
http://repo1.maven.org/maven2

Now Gradle will look for your dependenciesin this repository.

Warning: Be aware that the central Maven 2 repository is HTTP only and HTTPS is not supported. If you
need a public HTTPS enabled central repository, you can use the JCenter public repository (see
Section 24.6.2, “Maven JCenter repository”).

24.6.2. Maven JCenter repository

Bintray's JCenter is an up-to-date collection of all popular Maven OSS artifacts, including artifacts
published directly to Bintray.

To add the JCenter Maven repository (https://jcenter.bintray.com) simply add this to your build script:

Example 24.26. Adding Bintray's JCenter Maven repository

bui | d. gradl e

repositories {

jcenter ()

}

Now Gradle will look for your dependencies in the JCenter repository. jcenter() uses HTTPS to connect to
the repository. If you want to use HTTP you can configurej cent er () :

Example 24.27. Using Bintrays's JCenter with HTTP

bui |l d. gradl e

repositories {
jcenter {
url "http://jcenter.bintray.com"

}

24.6.3. Local Maven repository

To use the local Maven cache as arepository you can do:

Example 24.28. Adding thelocal Maven cache asa repository
bui |l d. gradl e

repositories {
mavenLocal ()

}

Gradle uses the same logic as Maven to identify the location of your local Maven cache. If alocal repository
locationisdefinedinaset ti ngs. xm , thislocation will be used. Theset ti ngs. xm in USER_HOVE/ . n2
takes precedence over the settings. xm in M2_HOVE/ conf. If no settings. xm is available,
Gradle uses the default location USER_HOME/ . n2/ r eposi tory.

Page 198 of 605

http://jcenter.bintray.com
http://bintray.com
https://jcenter.bintray.com

24.6.4. Maven repositories

For adding a custom Maven repository you can do:

Example 24.29. Adding custom M aven repository

bui | d. gradl e

repositories {
maven {

url "http://repo. nyconpany. conl maven2"

}

Sometimes a repository will have the POMs published to one location, and the JARS and other artifacts
published at another location. To define such arepository, you can do:

Example 24.30. Adding additional Maven repositoriesfor JAR files
bui |l d. gradl e

repositories {
maven {
/'l Look for POV and artifacts, such as JARs, here
url "http://repo2. myconpany. conl maven2"
/'l Look for artifacts here if not found at the above | ocation
artifactUls "http://repo. myconpany. com jars"
artifactUls "http://repo. myconpany. com jars2"

Gradle will look at the first URL for the POM and the JAR. If the JAR can't be found there, the artifact
URLs are used to look for JARS.

Accessing password protected Maven repositories

To access a Maven repository which uses basic authentication, you specify the username and password to
use when you define the repository:

Example 24.31. Accessing password protected Maven repository
bui |l d. gradl e

repositories {
maven {
credentials {
user nane 'user'
password ' passwor d'

}

url "http://repo. nyconpany. com naven2"

It is advisable to keep your username and password in gr adl e. properti es rather than directly in the

Page 199 of 605

build file.

24.6.5. Flat directory repository

If you want to use a (flat) filesystem directory as arepository, smply type:

Example 24.32. Flat repository resolver
bui |l d. gradl e

repositories {
flatDir {
dirs "lib
}
flatDir {
dirs "libl", '"lib2

}

This adds repositories which ook into one or more directories for finding dependencies. Note that this type
of repository does not support any meta-data formats like lvy XML or Maven POM files. Instead, Gradle
will dynamically generate a module descriptor (without any dependency information) based on the presence
of artifacts. However, as Gradle prefers to use modules whose descriptor has been created from rea
meta-data rather than being generated, flat directory repositories cannot be used to override artifacts with
real meta-data from other repositories. So, for example, if Gradlefindsonly j nxri-1. 2. 1.jar inaflat
directory repository, but j mxri - 1. 2. 1. pomin another repository that supports meta-data, it will use the
second repository to provide the module. For the use case of overriding remote artifacts with local ones
consider using an Ivy or Maven repository instead whose URL points to alocal directory. If you only work
with flat directory repositories you don't need to set all attributes of a dependency. See Section 24.4.8,
“Optiona attributes’.

24.6.6. lvy repositories

Defining an Ivy repository with a standard layout
Example 24.33. | vy repository
bui | d. gradl e
repositories {

ivy {
url "http://repo. myconpany. conirepo"

}

Defining a named layout for an vy repository

Y ou can specify that your repository conformsto the vy or Maven default layout by using a named layout.

Page 200 of 605

Example 24.34. | vy repository with named layout

bui | d. gradl e

repositories {
ivy {
url "http://repo. nyconpany. coni repo"

| ayout "nmaven”

Valid named layout values are ' gr adl e' (the default), ' maven', 'ivy' and ' pattern'. See
I vyArtifact Repository.layout(java.lang.String, groovy.lang.dC osure) in the
API documentation for details of these named layouts.

Defining custom pattern layout for an Ivy repository

To define an lvy repository with a non-standard layout, you can define a 'pattern’ layout for the repository:

Example 24.35. | vy repository with pattern layout
bui |l d. gradl e

repositories {
vy {
url "http://repo. nyconpany. coni repo"
| ayout "pattern", {
artifact "[nodule]/[revision]/[type]/[artifact].[ext]"

To define an Ivy repository which fetches Ivy files and artifacts from different locations, you can define
separate patterns to use to locate the Ivy files and artifacts:

Eachartifact ori vy specified for arepository adds an additional pattern to use. The patterns are used
in the order that they are defined.

Example 24.36. | vy repository with multiple custom patterns
buil d. gradl e

repositories {
vy {
url "http://repo. nyconpany. coni repo"
| ayout "pattern”, {
artifact "3rd-party-artifacts/[organisation]/[nodule]/[revision]/[arn

artifact "conpany-artifacts/[organisation]/[nmodule]/[revision]/[art
ivy "ivy-files/[organisation]/[nodule]/[revision]/ivy.xm"

Optionally, a repository with pattern layout can have its 'organisation’ part laid out in Maven style, with
forward slashes replacing dots as separators. For example, the organisation ny. conpany would then be

Page 201 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:layout(java.lang.String, groovy.lang.Closure)

represented as my/ conpany.

Example 24.37. I vy repository with Maven compatible layout

bui |l d. gradl e

repositories {
ivy {
url "http://repo. myconpany. conirepo"
| ayout "pattern”, {
artifact "[organisation]/[nmodule]/[revision]/[artifact]-[revision].][

n2conpati ble = true

Accessing password protected Ivy repositories

To access an vy repository which uses basic authentication, you specify the username and password to use
when you define the repository:

Example 24.38. | vy repository
bui |l d. gradl e

repositories {
ivy {
url 'http://repo. nyconpany. comn
credential s {
user nane ‘user'’

password ' password'

24.6.7. Supported repository transport protocols

Maven and lvy repositories support the use of various transport protocols. At the moment the following
protocols are supported:

Table 24.3. Repository transport protocols

Type Credential types
file none

http username/password
htt ps username/password
sftp username/password
s3 access key/secret key

To define arepository use ther eposi t or i es configuration block. Within ther eposi t or i es closure,
aMaven repository is declared with maven. An lvy repository is declared with i vy. The transport protocol

Page 202 of 605

is part of the URL definition for a repository. The following build script demonstrates how to create a
HTTP-based Maven and lvy repository:
Example 24.39. Declaring a Maven and | vy repository
bui |l d. gradl e
repositories {

maven {
url "http://repo. myconpany. coni maven2"

}

ivy {
url "http://repo. myconpany. conirepo"

}

If authentication is required for a repository, the relevant credentials can be provided. The following
exampl e shows how to provide username/password-based authentication for SFTP repositories:

Example 24.40. Providing credentialsto a Maven and I vy repository
buil d. gradl e

repositories {
maven {
url "sftp://repo. myconpany. com 22/ naven2"
credential s {
user nane ' user’
password ' password'

}

ivy {
url "sftp://repo. myconpany.com 22/ repo"
credential s {
user nane ' user’
password ' password'

When using an AWS S3 backed repository you need to authenticate using AwsCr edent i al s, providing
access-key and a private-key. The following example shows how to declare a S3 backed repository and
providing AWS credentials:

Page 203 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.credentials.AwsCredentials.html

Example 24.41. Declaring a S3 backed Maven and | vy repository

bui l d. gr

adl e

repositories {
maven {
url "s3://nmyConpanyBucket/ maven2"
credenti al s(AwsCredential s) {
accessKey "soneKey"
secret Key "sonmeSecret"

}

i vy

S3 configuration properties

{

url "s3://nmyConpanyBucket/ivyrepo"
credenti al s(AwsCredential s) {
accessKey "soneKey"
secret Key "sonmeSecret"

The following system properties can be used to configure the interactions with s3 repositories:

Table 24.4. S3 Configuration Properties

Property

org.gradle.s3.endpoint

org.gradle.s3.maxErrorRetry

S3 URL formats

S3 URL's are 'virtual-hosted-style' and must be in the following format s3: / / <bucket Nane>[. <r egi onSpe

Description

Used to override the AWS S3 endpoint when using anon AWS, S3
API compatible, storage service.

Specifies the maximum number of timesto retry arequest in the event
that the S3 server responds with a HT TP 5xx status code. When not
specified adefault value of 3 isused.

e.g.s3:// myBucket. s3. eu-central - 1. anazonaws. com maven/rel ease

* nyBucket isthe AWS S3 bucket name.
® s3.eu-central - 1. amazonaws. comisthe optional region specific endpoint.
* /maven/rel ease isthe AWS S3 key (unique identifier for an object within a bucket)

S3 proxy settings

A proxy for S3 can be configured using the following system properties:

® https
® https
® https
® https

. pr oxyHost
. pr oxyPort
. proxyUser
. proxyPassword

Page 204 of 605

http://docs.aws.amazon.com/general/latest/gr/rande.html#s3_region

® http. nonProxyHosts

If the 'org.gradle.s3.endpoint' property has been specified with a http (not https) URI the following system
proxy settings can be used:

® http. proxyHost
® http. proxyPort
® http. proxyUser
® http. proxyPassword
® http. nonProxyHosts

AWS S3 V4 Signatures (AWSA-HMAC-SHA256)

Some of the AWS S3 regions (eu-central-1 - Frankfurt) require that all HTTP requests are signed in
accordance with AWS's signature version 4. It is recommended to specify S3 URL's containing the region
specific endpoint when using buckets that require V4 signatures. e.g. s3: / / sonebucket . s3. eu-central -

NOTE: When aregion-specific endpoint is not specified for buckets requiring V4 Signatures, Gradle
will use the default AWS region (us-east-1) and the following warning will appear on the console:
Attempting to re-send the request to with AWS V4 authentication. To avoid this warning in the
future, please use region-specific endpoint to access buckets located in regions that require V4
signing.

Failing to specify the region-specific endpoint for buckets requiring V4 signatures means:

® 3 round-trips to AW5, as opposed to one, for every file upload and downl
® Depending on location - increased network | atencies and sl ower builds.
® | ncreased |ikelihood of transm ssion failures.

Configuring HT TP authentication schemes

When configuring a repository using HTTP or HTTPS transport protocols, multiple authentication schemes
are available. By default, Gradle will attempt to use all schemes that are supported by the Apache HttpClient
library, documented here. In some cases, it may be preferable to explicitly specify which authentication
schemes should be used when exchanging credentials with a remote server. When explicitly declared, only
those schemes are used when authenticating to a remote repository. The following example show how to
configure arepository to use only digest authentication:

Page 205 of 605

http://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html#d5e625

Example 24.42. Configurerepository to use only digest authentication
buil d. gradl e

repositories {
maven {
url '"https://repo. nyconpany. conl naven2'
credential s {
user nane 'user'
password ' password'

}

aut henti cation {
di gest (Di gest Aut henti cati on)

Currently supported authentication schemes are:

Table 24.5. Authentication schemes

Type Description

Basi cAut henti cati on Basic access authentication over HTTP. When using this scheme,
credentials are sent preemptively.

Di gest Aut henti cati on Digest access authentication over HTTP.

Using preemptive authentication

Gradle's default behavior is to only submit credentials when a server responds with an authentication
challenge in the form of aHTTP 401 response. In some cases, the server will respond with a different code
(ex. for repositories hosted on GitHub a 404 is returned) causing dependency resolution to fail. To get
around this behavior, credentials may be sent to the server preemptively. To enable preemptive
authentication simply configure your repository to explicitly usethe Basi cAut hent i cat i on scheme:

Example 24.43. Configurerepository to use preemptive authentication
bui |l d. gradl e

repositories {
maven {
url 'https://repo. myconpany. com maven2'
credentials {
user nane 'user'
password ' password’

}

aut henti cation {
basi c(Basi cAut henti cati on)

24.6.8. Working with repositories

To access arepository:

Page 206 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.authentication.http.BasicAuthentication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.authentication.http.DigestAuthentication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.authentication.http.BasicAuthentication.html

Example 24.44. Accessing a repository

bui | d. gradl e

println repositories.|ocal Repository. nane

println repositories['|ocal Repository']. nane

To configure arepository:

Example 24.45. Configuration of a repository
bui |l d. gradl e

repositories {
flatDir {
nane '| ocal Repository
}
}
repositories {
| ocal Repository {
dirs "lib
}
}

repositories.| ocal Repository {
dirs 'lib'

}

24.6.9. More about Ivy resolvers

Gradleis extremely flexible regarding repositories:

® There are many options for the protocol to communicate with the repository (e.g. filesystem, http, ssh,
sftp ...)

® The protocol sftp currently only supports username/password-based authentication.

¢ Each repository can have its own layout.

Let's say, you declare adependency onthej uni t: j uni t: 3. 8. 2 library. Now how does Gradlefind it in
the repositories? Somehow the dependency information has to be mapped to a path. In contrast to Maven,
where this path is fixed, with Gradle you can define a pattern that defines what the path will look like. Here
are some examples; [13]

/1l Maven2 layout (if a repository is marked as Maven2 conpati bl e, the organi zat
soner oot / [organi sati on] /[nmodul e]/[revision]/[ndul e]-[revision].[ext]

/1 Typical layout for an Ivy repository (the organization is not split into subf
soner oot /[organi sation]/[nmodul e]/[revision]/[type]s/[artifact].[ext]

/1 Sinmple layout (the organization is not used, no nested folders.)
soneroot/[artifact]-[revision].[ext]

To add any kind of repository (you can pretty easy write your own ones) you can do:

Page 207 of 605

Example 24.46. Definition of a custom repository

bui | d. gradl e

repositories {
ivy {
ivyPattern "$projectDir/repo/[organisation]/[nmodul e]-ivy-[revision].xm"

artifactPattern "$projectDir/repo/[organisation]/[nodul e]-[revision](-[d

An overview of which Resolvers are offered by Ivy and thus also by Gradle can be found here. With Gradle
you just don't configure them via XML but directly viatheir API.

24.7. How dependency resolution works

Gradle takes your dependency declarations and repository definitions and attempts to download all of your
dependencies by a process called dependency resolution. Below is abrief outline of how this process works.

® Given arequired dependency, Gradle first attempts to resolve the module for that dependency. Each
repository is inspected in order, searching first for a module descriptor file (POM or Ivy file) that
indicates the presence of that module. If no module descriptor is found, Gradle will search for the
presence of the primary module artifact file indicating that the module exists in the repository.
® |f the dependency is declared as a dynamic version (like 1. +), Gradle will resolve this to the newest
available static version (like 1. 2) in the repository. For Maven repositories, thisis done using the maven-
file, while for Ivy repositories thisis done by directory listing.
¢ |f the module descriptor is a POM file that has a parent POM declared, Gradle will recursively
attempt to resolve each of the parent modules for the POM.
® Once each repository has been inspected for the module, Gradle will choose the 'best’ oneto use. Thisis
done using the following criteria
® For adynamic version, a'higher' static version is preferred over a'lower' version.
® Modules declared by a module descriptor file (Ivy or POM file) are preferred over modules that have
an artifact file only.
® Modulesfrom earlier repositories are preferred over modulesin later repositories.
When the dependency is declared by a static version and a module descriptor file is found in a
repository, there is no need to continue searching later repositories and the remainder of the process is
short-circuited.
® All of the artifacts for the module are then requested from the same repository that was chosen in the
process above.

24.8. Fine-tuning the dependency resolution
process

In most cases, Gradle's default dependency management will resolve the dependencies that you want in your
build. In some cases, however, it can be necessary to tweak dependency resolution to ensure that your build
receives exactly the right dependencies.

There are anumber of ways that you can influence how Gradle resolves dependencies.

Page 208 of 605

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html

24.8.1. Forcing a particular module version

Forcing a module version tells Gradle to always use a specific version for given dependency (transitive or
not), overriding any version specified in a published module descriptor. This can be very useful when
tackling version conflicts - for more information see Section 24.2.3, “ Resolve version conflicts’.

Force versions can also be used to deal with rogue metadata of transitive dependencies. If a transitive
dependency has poor quality metadata that leads to problems at dependency resolution time, you can force
Gradle to use a newer, fixed version of this dependency. For an example, seethe Resol uti onSt r at egy
class in the APl documentation. Note that 'dependency resolve rules (outlined below) provide a more
powerful mechanism for replacing a broken module dependency. See the section called “Blacklisting a
particular version with a replacement”.

24.8.2. Preferring modules that are part of the your build

Preferring project modules tells Gradle to use the version of a module that is part of the build itself (as part
of Chapter 25, Multi-project Builds or as includes in Chapter 10, Composite builds). This allows the easy
inclusion of an individual fork (e.g. containing a bugfix) of a module - for more information see
Section 24.2.3, “Resolve version conflicts’.

24.8.3. Using dependency resolve rules

A dependency resolve rule is executed for each resolved dependency, and offers a powerful api for
manipulating a requested dependency prior to that dependency being resolved. This feature is incubating,
but currently offers the ability to change the group, name and/or version of a requested dependency,
allowing a dependency to be substituted with a completely different module during resolution.

Dependency resolve rules provide a very powerful way to control the dependency resolution process, and
can be used to implement all sorts of advanced patterns in dependency management. Some of these patterns
are outlined below. For more information and code samples see the Resol ut i onSt r at egy classin the
API documentation.

Modelling releaseable units

Often an organisation publishes a set of libraries with a single version; where the libraries are built, tested
and published together. These libraries form a 'rel easable unit', designed and intended to be used as a whole.
It does not make sense to use libraries from different releasable units together.

But it is easy for transitive dependency resolution to violate this contract. For example:

® nodul e- adependsonr el easabl e-unit: part-one:1.0
®* nodul e- b dependsonr el easabl e-unit: part-two: 1.1

A build depending on both nodul e- a and nodul e- b will obtain different versions of libraries within the
releasable unit.

Dependency resolve rules give you the power to enforce releasable units in your build. Imagine areleasable
unit defined by all libraries that have 'org.gradl€’ group. We can force all of these libraries to use a consi stent
version:

Page 209 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html

Example 24.47. Forcing consistent version for a group of libraries

bui | d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == '"org.gradle') {

details.useVersion '1.4'

Implement a custom versioning scheme

In some corporate environments, the list of module versions that can be declared in Gradle builds is
maintained and audited externally. Dependency resolve rules provide a neat implementation of this pattern:

® In the build script, the developer declares dependencies with the module group and name, but uses a
placeholder version, for example: 'def aul t .

® The'default’ version isresolved to a specific version via a dependency resolve rule, which looks up the
version in a corporate catalog of approved modules.

This rule implementation can be neatly encapsulated in a corporate plugin, and shared across al builds
within the organisation.

Example 24.48. Using a custom ver sioning scheme
bui |l d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.version == "default') {
def version = findDefaultVersionlnCatal og(details.requested.group,
det ai | s. useVer si on versi on

def findDefaultVersionlnCatal og(String group, String name) {
/I some custom | ogic that resolves the default version into a specific versid
"1.0"

Blacklisting a particular version with a replacement

Dependency resolve rules provide a mechanism for blacklisting a particular version of a dependency and
providing areplacement version. This can be useful if a certain dependency version is broken and should not
be used, where a dependency resolve rule causes this version to be replaced with a known good version. One
example of a broken module is one that declares a dependency on a library that cannot be found in any of
the public repositories, but there are many other reasons why a particular module version is unwanted and a
different version is preferred.

Page 210 of 605

In example below, imagine that version 1. 2. 1 contains important fixes and should always be used in
preference to 1. 2. The rule provided will enforce just this: any time version 1. 2 is encountered it will be
replaced with 1. 2. 1. Note that thisis different from aforced version as described above, in that any other
versions of this module would not be affected. This means that the 'newest' conflict resolution strategy
would still select version 1. 3 if this version was also pulled transitively.

Example 24.49. Blacklisting a version with a replacement

bui | d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.group == 'org.software’ && detail s.requested. name
/lprefer different version which contains sone necessary fixes

details.useVersion '1.2. 1

Substituting a dependency module with a compatible replacement

At times a completely different module can serve as a replacement for a requested module dependency.
Examplesinclude using 'gr oovy' in place of 'gr oovy-al | , or using'l og4j - over - sl f 4j 'instead of 'l 0g4
'. Starting with Gradle 1.5 you can make these substitutions using dependency resolve rules:

Example 24.50. Changing dependency group and/or name at the resolution
bui |l d. gradl e

configurations.all {
resol utionStrat egy. eachDependency { DependencyResol veDetails details ->
if (details.requested.nane == 'groovy-all"') {
/I prefer 'groovy' over 'groovy-all':
detail s. useTarget group: details.requested. group, nane: 'groovy', vd

}

if (details.requested. name == 'l o0g4]"') ({
[l prefer 'log4j-over-sif4j' over 'log4]j', with fixed version:
detail s. useTarget "org.slf4j:1og4j-over-slf4j:1.7.10"

24.8.4. Dependency Substitution Rules

Dependency substitution rules work similarly to dependency resolve rules. In fact, many capabilities of
dependency resolve rules can be implemented with dependency substitution rules. They alow project and
module dependencies to be transparently substituted with specified replacements. Unlike dependency
resolve rules, dependency substitution rules allow project and module dependencies to be substituted
interchangeably.

NOTE: Adding a dependency substitution rule to a configuration changes the timing of when that

Page 211 of 605

configuration is resolved. Instead of being resolved on first use, the configuration is instead resolved
when the task graph is being constructed. This can have unexpected consequences if the configuration
is being further modified during task execution, or if the configuration relies on modules that are
published during execution of another task.

To explain:

® A Configurati on canbedeclared as an input to any Task, and that configuration can include
project dependencies when it is resolved.

* |f aproject dependency isan input to a Task (via a configuration), then tasks to built the project
artifacts must be added to the task dependencies.

® |norder to determine the project dependencies that are inputs to atask, Gradle needs to resolve the
Conf i gur ati on inputs.

® Because the Gradle task graph is fixed once task execution has commenced, Gradle needsto
perform this resolution prior to executing any tasks.

In the absence of dependency substitution rules, Gradle knows that an external module dependency
will never transitively reference a project dependency. This makes it easy to determine the full set of
project dependencies for a configuration through simple graph traversal. With this functionality,
Gradle can no longer make this assumption, and must perform afull resolve in order to determine the
project dependencies.

Substituting an external module dependency with a project dependency

One use case for dependency substitution is to use a locally developed version of a module in place of one
that is downloaded from an external repository. This could be useful for testing alocal, patched version of a
dependency.

The module to be replaced can be declared with or without a version specified.

Example 24.51. Substituting a module with a project

bui |l d. gradl e

configurations.all {
resol uti onStrat egy. dependencySubstitution {
substitute nodul e("org.utils:api”) with project(":api")

substitute nodul e("org.utils:util:2.5") with project(":util")

Note that a project that is substituted must be included in the multi-project build (via settings.gradle).
Dependency substitution rules take care of replacing the module dependency with the project dependency
and wiring up any task dependencies, but do not implicitly include the project in the build.

Page 212 of 605

Substituting a project dependency with a modul e replacement

Another way to use substitution rules is to replace a project dependency with a module in a multi-project
build. This can be useful to speed up development with a large multi-project build, by allowing a subset of
the project dependencies to be downloaded from arepository rather than being built.

The module to be used as a replacement must be declared with a version specified.

Example 24.52. Substituting a project with a module

bui |l d. gradl e

configurations.all {
resol utionStrat egy. dependencySubstitution {

substitute project(":api") with nmodul e("org.utils:api:1.3")

}

When a project dependency has been replaced with a module dependency, that project is till included in the
overall multi-project build. However, tasks to build the replaced dependency will not be executed in order to
build the resolve the depending Conf i gur ati on.

Conditionally substituting a dependency

A common use case for dependency substitution is to allow more flexible assembly of sub-projects within a
multi-project build. This can be useful for developing alocal, patched version of an external dependency or
for building a subset of the modules within alarge multi-project build.

The following example uses a dependency substitution rule to replace any module dependency with the
group "org.example", but only if alocal project matching the dependency name can be located.

Example 24.53. Conditionally substituting a dependency
buil d. gradl e

configurations.all {
resol uti onStrat egy. dependencySubstitution.all { DependencySubstitution depe
i f (dependency. requested instanceof Mdul eConponent Sel ect or && dependend
def targetProject = findProject(":${dependency.requested. nodul e}")
if (targetProject !'= null) {

dependency. useTar get target Proj ect

Note that a project that is substituted must be included in the multi-project build (via settings.gradie).
Dependency substitution rules take care of replacing the module dependency with the project dependency,
but do not implicitly include the project in the build.

Page 213 of 605

24.8.5. Specifying default dependencies for a configuration

A configuration can be configured with default dependencies to be used if no dependencies are explicitly set
for the configuration. A primary use case of this functionality is for developing plugins that make use of
versioned tools that the user might override. By specifying default dependencies, the plugin can use a
default version of the tool only if the user has not specified a particular version to use.

Example 24.54. Specifying default dependencies on a configuration

bui | d. gradl e

configurations {
pl ugi nTool {
def aul t Dependenci es { dependenci es ->

dependenci es. add(t hi s. proj ect. dependenci es. create("org. gradl e: my-uti

24.8.6. Enabling Ivy dynamic resolve mode

Gradle's vy repository implementations support the equivalent to Ivy's dynamic resolve mode. Normally,
Gradle will usether ev attribute for each dependency definition included inani vy. xm file. In dynamic
resolve mode, Gradle will instead prefer the r evConst r ai nt attribute over the r ev attribute for a given
dependency definition. If ther evConst r ai nt attribute is not present, ther ev attribute is used instead.

To enable dynamic resolve mode, you need to set the appropriate option on the repository definition. A
couple of examples are shown below. Note that dynamic resolve mode is only available for Gradle's vy
repositories. It is not available for Maven repositories, or custom lvy DependencyResol ver
implementations.

Example 24.55. Enabling dynamic resolve mode

bui |l d. gradl e

/'l Can enabl e dynam c resol ve node when you define the repository
repositories {
ivy {
url "http://repo. myconpany. conirepo"
resol ve. dynani cMbde = true

}

// Can use a rule instead to enable (or disable) dynam c resolve node for all rd
repositories.w thType(lvyArtifactRepository) {
resol ve. dynani cMbde = true

}

Page 214 of 605

24.8.7. Component metadata rules

Each module (also called component) has metadata associated with it, such as its group, name, version,
dependencies, and so on. This metadata typically originates in the modul€e's descriptor. Metadata rules allow
certain parts of a modul€'s metadata to be manipulated from within the build script. They take effect after a
modul€'s descriptor has been downloaded, but before it has been selected among all candidate versions. This
makes metadata rules another instrument for customizing dependency resolution.

One piece of module metadata that Gradle understands is a module's status scheme. This concept, also
known from lvy, models the different levels of maturity that a module transitions through over time. The
default status scheme, ordered from least to most mature status, isi nt egr ati on, mi | est one, r el ease
. Apart from a status scheme, a module also has a (current) status, which must be one of the values in its
status scheme. If not specified in the (Ivy) descriptor, the status defaultsto i nt egr at i on for Ivy modules
and Maven snapshot modules, and r el ease for Maven modules that aren't snapshots.

A modul€e's status and status scheme are taken into consideration when a | at est version selector is
resolved. Specifically, | at est . soneSt at us will resolve to the highest module version that has status sone St
or a more mature status. For example, with the default status scheme in place, | at est . i nt egrati on

will select the highest module version regardless of its status (because i nt egr at i on is the least mature
status), whereas | at est . r el ease will select the highest module version with status r el ease. Hereis
what thislooks like in code:

Example 24.56. 'L atest' version selector

buil d. gradl e

dependenci es {
configl "org.sanple:client:|atest.integration”
config2 "org.sanple:client:|atest.rel ease"

}

task listConfigs {

doLast {
configurations.configl.each { println it.nanme }
println()
configurations. config2.each { println it.name }

Output of gradl e -qg |istConfigs

> gradle -q listConfigs
client-1.5.jar

client-1.4.jar

The next example demonstrates | at est selectors based on a custom status scheme declared in a
component metadata rule that appliesto al modules:

Page 215 of 605

Example 24.57. Custom status scheme

bui | d. gradl e

dependenci es {
config3 "org.sanpl e: api:latest.silver"
conponents {
all { Conponent Met adat aDetails details ->
if (details.id.group == "org.sanple" &% details.id.nane == "api") {

detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]

Component metadata rules can be applied to a specified module. Modules must be specified in the form of
"group:module”.

Example 24.58. Custom status scheme by module
bui |l d. gradl e

dependenci es {
config4 "org.sanple:lib:latest.prod"
conponents {
wi t hModul e(' org. sanpl e: i b") { Conponent Met adat aDetails details ->
details.statusScheme = ["int", "rc", "prod"]

Gradle can also create component metadata rules utilizing Ivy-specific metadata for modules resolved from
an lvy repository. Values from the vy descriptor are made available via the | vyModul eDescri pt or
interface.

Example 24.59. vy component metadatarule
buil d. gradl e

dependenci es {
config6 "org.sanple:lib:latest.rc"
conponents {
wi t hModul e("org. sanpl e: |1 b") { Conponent Met adat aDetails details, |vyMd
if (ivyMdul e.branch == "testing') {

details.status = "rc"

Note that any rule that declares specific arguments must always include a
Conmponent Met adat aDet ai | s argument as the first argument. The second Ivy metadata argument is
optional.

Component metadata rules can also be defined using a rule source object. A rule source object is any object

Page 216 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html

that contains exactly one method that defines the rule action and is annotated with @vut at e.
This method:

® must return void.
* must have Conponent Met adat aDet ai | s asthe first argument.
® may have an additional parameter of type| vyModul eDescri pt or.

Example 24.60. Rule sour ce component metadata rule
bui |l d. gradl e

dependenci es {
config5 "org.sanpl e: api : | atest. gol d"
conponents {
wi t hModul e(' org. sanpl e: api ', new Custontt at usRul e())
}
}

cl ass CustonttatusRul e {

@t at e
voi d set St at usSchene(Conponent Met adat aDetails details) {
detail s. statusScheme = ["bronze", "silver", "gold", "platinuni]

}

24.8.8. Component Selection Rules

Component selection rules may influence which component instance should be selected when multiple
versions are available that match a version selector. Rules are applied against every available version and
allow the version to be explicitly rejected by rule. This allows Gradle to ignore any component instance that
does not satisfy conditions set by the rule. Examples include:

® For adynamic version like '1.+' certain versions may be explicitly rejected from selection
* For adtatic version like '1.4' an instance may be rejected based on extra component metadata such as the
Ivy branch attribute, allowing an instance from a subsequent repository to be used.

Rules are configured via the Conponent Sel ecti onRul es object. Each rule configured will be called
with a Conponent Sel ect i on object as an argument which contains information about the candidate
version being considered. Calling Conponent Sel ection. rej ect(java.l ang. String) causes
the given candidate version to be explicitly rejected, in which case the candidate will not be considered for
the selector.

The following example shows a rule that disallows a particular version of a module but allows the dynamic
version to choose the next best candidate.

Page 217 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ComponentMetadataDetails.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ComponentSelectionRules.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ComponentSelection.html#org.gradle.api.artifacts.ComponentSelection:reject(java.lang.String)

Example 24.61. Component selection rule
buil d. gradl e

configurations {
rej ectConfig {
resol utionStrategy {
conponent Sel ecti on {

/'l Accept the highest version matching the requested version thg

all { Component Sel ection sel ection ->
if (selection.candidate.group == 'org.sanple' && sel ection.d
selection.reject("version 1.5 is broken for 'org.sanple:

}

dependenci es {
rejectConfig "org. sanple: api : 1. +"

}

Note that version selection is applied starting with the highest version first. The version selected will be the
first version found that all component selection rules accept. A version is considered accepted no rule
explicitly rejectsit.

Similarly, rules can be targeted at specific modules. Modules must be specified in the form of
"group:module”.

Example 24.62. Component selection rule with module tar get
bui |l d. gradl e

configurations {
target Config {
resol utionStrategy {
conmponent Sel ecti on {
wi t hModul e("org. sanpl e: api ") { Conponent Sel ecti on sel ection ->
if (selection.candidate.version == "1.5") {

sel ection.reject("version 1.5 is broken for 'org.sanple:

}

Component selection rules can also consider component metadata when selecting a version. Possible
metadata arguments that can be considered are Conponent Met adat a and | vyModul eDescri pt or.

Page 218 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 24.63. Component selection rule with metadata
buil d. gradl e

configurations {
nmet adat aRul esConfi g {
resol utionStrategy {
conponent Sel ecti on {

/'l Reject any versions with a status of 'experinental’
all { Component Sel ection sel ecti on, Conponent Met adat a net adata -
if (selection.candidate.group == 'org.sanple' && metadat a. st
sel ection.reject("don't use experinental candidates fror

}
}

/'l Accept the highest version with either a "rel ease" branch or
wi t hModul e(' org. sanpl e: api ') { Conponent Sel ecti on sel ection, Iv
if (descriptor.branch != "rel ease" && netadata.status !="'m
sel ection.reject ("' org. sanpl e: api' nust have testing bra

}

Note that a Conponent Sel ect i on argument is always required as the first parameter when declaring a
component selection rule with additional Ivy metadata parameters, but the metadata parameters can be
declared in any order.

Lastly, component selection rules can also be defined using a rule source object. A rule source object is any
object that contains exactly one method that defines the rule action and is annotated with @vut at e.

This method:

® must return void.
* must have Conponent Sel ect i on asthefirst argument.
* may have additional parameters of type Conponent Met adat a and/or | vyModul eDescri pt or.

Page 219 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ComponentSelection.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ComponentMetadata.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/ivy/IvyModuleDescriptor.html

Example 24.64. Component selection rule using a rule sour ce object
buil d. gradl e

cl ass Rej ect Test Branch {
@t at e
voi d eval uat eRul e(Component Sel ecti on sel ection, |vyMdul eDescriptor ivy) {
if (ivy.branch == "test") {
sel ection.reject("reject test branch")

configurations {
rul eSour ceConfig {
resol uti onStrategy {
conponent Sel ecti on {
all new Rej ect Test Branch()

24.8.9. Module replacement rules

Module replacement rules allow a build to declare that a legacy library has been replaced by a new one. A
good example when a new library replaced a legacy one is the "google-collections" -> "guava' migration.
The team that created google-collections decided to change the module name from
"com.google.collections.google-collections” into "com.google.guava:guava’'. This a legal scenario in the
industry: teams need to be able to change the names of products they maintain, including the module
coordinates. Renaming of the module coordinates has impact on conflict resolution.

To explain the impact on conflict resolution, let's consider the "google-collections' -> "guava' scenario. It
may happen that both libraries are pulled into the same dependency graph. For example, "our" project
depends on guava but some of our dependencies pull in a legacy version of google-collections. This can
cause runtime errors, for example during test or application execution. Gradle does not automatically resolve
the google-collections VS guava conflict because it is not considered as a "version conflict”. It's because the
module coordinates for both libraries are completely different and conflict resolution is activated when
"group” and "name" coordinates are the same but there are different versions available in the dependency
graph (for more info, please refer to the section on conflict resolution). Traditional remedies to this problem
are;

® Declare exclusion rule to avoid pulling in "google-collections' to graph. It is probably the most popular
approach.

Avoid dependenciesthat pull in legacy libraries.

* Upgrade the dependency version if the new version no longer pullsin alegacy library.

* Downgrade to "google-collections'. It's not recommended, just mentioned for completeness.

Traditional approaches work but they are not general enough. For example, an organisation wants to resolve
the google-collections VS guava conflict resolution problem in all projects. Starting from Gradle 2.2 it is

Page 220 of 605

possible to declare that certain module was replaced by other. This enables organisations to include the
information about module replacement in the corporate plugin suite and resolve the problem holistically for
all Gradle-powered projectsin the enterprise.

Example 24.65. Declaring module replacement

bui | d. gradl e

dependenci es {
nodul es {
nmodul e(" com googl e. col | ecti ons: googl e-col | ecti ons") {

repl acedBy(" com googl e. guava: guava")

For more examples and detailed API, please refer to the DSL reference for
Conponent Met adat aHandl er .

What happens when we declare that "google-collections' are replaced by "guava'? Gradle can use this
information for conflict resolution. Gradle will consider every version of "guava' newer/better than any
version of "google-collections'. Also, Gradle will ensure that only guava jar is present in the classpath /
resolved file list. Please note that if only "google-collections' appears in the dependency graph (e.g. no
"guava') Gradle will not eagerly replace it with "guava'. Module replacement is an information that Gradle
uses for resolving conflicts. If there is no conflict (e.g. only "google-collections’ or only "guava' in the
graph) the replacement information is not used.

Currently it is not possible to declare that certain modules is replaced by a set of modules. However, it is
possible to declare that multiple modules are replaced by a single module.

24.9. The dependency cache

Gradle contains a highly sophisticated dependency caching mechanism, which seeks to minimise the
number of remote requests made in dependency resolution, while striving to guarantee that the results of
dependency resolution are correct and reproducible.

The Gradle dependency cache consists of 2 key types of storage:

* A file-based store of downloaded artifacts, including binaries like jars as well as raw downloaded
meta-data like POM files and lvy files. The storage path for a downloaded artifact includes the SHA1
checksum, meaning that 2 artifacts with the same name but different content can easily be cached.

® A binary store of resolved module meta-data, including the results of resolving dynamic versions,
module descriptors, and artifacts.

Separating the storage of downloaded artifacts from the cache metadata permits us to do some very powerful
things with our cache that would be difficult with a transparent, file-only cache layout.

The Gradle cache does not allow the local cache to hide problems and create other mysterious and difficult
to debug behavior that has been a challenge with many build tools. This new behavior isimplemented in a
bandwidth and storage efficient way. In doing so, Gradle enables reliable and reproducible enterprise builds.

Page 221 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.ComponentMetadataHandler.html

24.9.1. Key features of the Gradle dependency cache

Separate metadata cache

Gradle keeps a record of various aspects of dependency resolution in binary format in the metadata cache.
The information stored in the metadata cache includes:

® The result of resolving adynamic version (e.g. 1. +) to aconcrete version (e.g. 1. 2).

® The resolved module metadata for a particular module, including module artifacts and module
dependencies.

® Theresolved artifact metadata for a particular artifact, including a pointer to the downloaded artifact file.

® The absence of a particular module or artifact in a particular repository, eliminating repeated attemptsto
access aresource that does not exist.

Every entry in the metadata cache includes a record of the repository that provided the information as well
as atimestamp that can be used for cache expiry.

Repository caches are independent

As described above, for each repository there is a separate metadata cache. A repository is identified by its
URL, type and layout. If amodule or artifact has not been previously resolved from this repository, Gradle
will attempt to resolve the module against the repository. This will always involve a remote lookup on the
repository, however in many cases no download will be required (seethe section called “Artifact reuse”,
below).

Dependency resolution will fail if the required artifacts are not available in any repository specified by the
build, even if the local cache has a copy of this artifact which was retrieved from a different repository.
Repository independence allows builds to be isolated from each other in an advanced way that no build tool
has done before. Thisis akey feature to create builds that are reliable and reproducible in any environment.

Artifact reuse

Before downloading an artifact, Gradle tries to determine the checksum of the required artifact by
downloading the sha file associated with that artifact. If the checksum can be retrieved, an artifact is not
downloaded if an artifact already exists with the same id and checksum. If the checksum cannot be retrieved
from the remote server, the artifact will be downloaded (and ignored if it matches an existing artifact).

As well as considering artifacts downloaded from a different repository, Gradle will also attempt to reuse
artifacts found in the local Maven Repository. If a candidate artifact has been downloaded by Maven, Gradle
will usethis artifact if it can be verified to match the checksum declared by the remote server.

Checksum based storage

It is possible for different repositories to provide a different binary artifact in response to the same artifact
identifier. This is often the case with Maven SNAPSHOT artifacts, but can also be true for any artifact
which is republished without changing it's identifier. By caching artifacts based on their SHA1 checksum,
Gradle is able to maintain multiple versions of the same artifact. This means that when resolving against one
repository Gradle will never overwrite the cached artifact file from a different repository. This is done
without requiring a separate artifact file store per repository.

Page 222 of 605

Cache Locking

The Gradle dependency cache uses file-based locking to ensure that it can safely be used by multiple Gradle
processes concurrently. The lock is held whenever the binary meta-data store is being read or written, but is
released for slow operations such as downloading remote artifacts.

24.9.2. Command line options to override caching

Offline

The - - of f | i ne command line switch tells Gradle to always use dependency modules from the cache,
regardless if they are due to be checked again. When running with offline, Gradle will never attempt to

access the network to perform dependency resolution. If required modules are not present in the dependency
cache, build execution will fail.

Refresh

At times, the Gradle Dependency Cache can be out of sync with the actual state of the configured
repositories. Perhaps a repository was initially misconfigured, or perhaps a “non-changing” module was
published incorrectly. To refresh all dependencies in the dependency cache, usethe - - r ef r esh- dependenci ¢
option on the command line.

The - -refresh- dependenci es option tells Gradle to ignore all cached entries for resolved modules
and artifacts. A fresh resolve will be performed against all configured repositories, with dynamic versions
recal culated, modules refreshed, and artifacts downloaded. However, where possible Gradle will check if the
previously downloaded artifacts are valid before downloading again. This is done by comparing published
SHA1 valuesin the repository with the SHA1 values for existing downloaded artifacts.

24.9.3. Fine-tuned control over dependency caching

Y ou can fine-tune certain aspects of caching using the Resol ut i onSt r at egy for a configuration.

By default, Gradle caches dynamic versions for 24 hours. To change how long Gradle will cache the
resolved version for adynamic version, use:

Example 24.66. Dynamic version cache control

bui | d. gradl e

configurations.all {
resol uti onStrat egy. cacheDynam cVer si onsFor 10, 'm nutes'

}

By default, Gradle caches changing modules for 24 hours. To change how long Gradle will cache the
meta-data and artifacts for a changing module, use:

Page 223 of 605

Example 24.67. Changing module cache control
buil d. gradl e

configurations.all {

resol utionStrat egy. cacheChangi nghdul esFor 4, 'hours'

}

For more details, take alook at the APl documentation for Resol ut i onSt r at egy.

24.10. Strategies for transitive dependency
management

Many projects rely on the Maven Central repository. Thisis not without problems.

® The Maven Central repository can be down or can be slow to respond.

* The POM files of many popular projects specify dependencies or other configuration that are just plain
wrong (for instance, the POM file of the “conmons- ht t pcl i ent - 3. 0" module declares JUnit as a
runtime dependency).

® For many projects there is not one right set of dependencies (as more or less imposed by the POM
format).

If your project relies on the Maven Central repository you are likely to need an additional custom repository,
because:

® Y ou might need dependencies that are not uploaded to Maven Central yet.

® Youwant to deal properly with invalid metadatain a Maven Central POM file.

® You don't want to expose people to the downtimes or slow response of Maven Central, if they just want
to build your project.

It is not a big deal to set-up a custom repository, [24] put it can be tedious to keep it up to date. For a new
version, you always have to create the new XML descriptor and the directories. Y our custom repository is
another infrastructure element which might have downtimes and needs to be updated. To enable historical
builds, you need to keep all the past libraries, not to mention a backup of these. It is another layer of
indirection. Another source of information you have to lookup. All thisis not really a big deal but in its sum
it has an impact. Repository managers like Artifactory or Nexus make this easier, but most open source
projects don't usually have a host for those products. Thisis changing with new services like Bintray that let
developers host and distribute their release binaries using a self-service repository platform. Bintray also
supports sharing approved artifacts though the JCenter public repository to provide a single resolution
address for al popular OSS Java artifacts (see Section 24.6.2, “Maven JCenter repository™).

This is a common reason why many projects prefer to store their libraries in their version control system.
This approach is fully supported by Gradle. The libraries can be stored in aflat directory without any XML
module descriptor files. Yet Gradle offers complete transitive dependency management. Y ou can use either
client module dependencies to express the dependency relations, or artifact dependenciesin case afirst level
dependency has no transitive dependencies. People can check out such a project from your source code
control system and have everything necessary to build it.

Page 224 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://repo1.maven.org/maven2
http://bintray.com
http://jcenter.bintray.com

If you are working with a distributed version control system like Git you probably don't want to use the
version control system to store libraries as people check out the whole history. But even here the flexibility
of Gradle can make your life easier. For example, you can use a shared flat directory without XML
descriptors and yet you can have full transitive dependency management, as described above.

You could also have a mixed strategy. If your main concern is bad metadata in the POM file and
maintaining custom XML descriptors, then Client Modules offer an alternative. However, you can still use a
Maven2 repo or your custom repository as a repository for jars only and still enjoy transitive dependency
management. Or you can only provide client modules for POMs with bad metadata. For the jars and the
correct POMs you still use the remote repository.

24.10.1. Implicit transitive dependencies

There is another way to deal with transitive dependencies without XML descriptor files. You can do this
with Gradle, but we don't recommend it. We mention it for the sake of completeness and comparison with
other build tools.

The trick is to use only artifact dependencies and group them in lists. This will directly express your first
level dependencies and your transitive dependencies (see Section 24.4.8, “Optional attributes’). The
problem with thisis that Gradle dependency management will see this as specifying al dependencies as first
level dependencies. The dependency reports won't show your real dependency graph and the conpi | e task
uses all dependencies, not just the first level dependencies. All in al, your build is less maintainable and
reliable than it could be when using client modules, and you don't gain anything.

[11] Gradle supports partial multiproject builds (see Chapter 25, Multi-project Builds).
[12] http://books.sonatype.com/mvnref-book/reference/pom-rel ationshi ps-sect-project-rel ationships.html

[13] At http://ant.apache.org/ivy/history/latest-milestone/concept.ntml you can learn more about ivy
patterns.

[14] If you want to shield your project from the downtimes of Maven Central things get more complicated.
Y ou probably want to set-up a repository proxy for this. In an enterprise environment this is rather common.
For an open source project it looks like overkill.

Page 225 of 605

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-relationships.html
http://ant.apache.org/ivy/history/latest-milestone/concept.html

25

Multi-project Builds

The powerful support for multi-project builds is one of Gradle's unique selling points. This topic is also the
most intellectually challenging.

A multi-project build in gradle consists of one root project, and one or more subprojects that may also have
subprojects.

25.1. Cross project configuration

While each subproject could configure itself in complete isolation of the other subprojects, it is common that
subprojects share common traits. It is then usually preferable to share configurations among projects, so the
same configuration affects several subprojects.

Let's start with a very simple multi-project build. Gradle is a general purpose build tool at its core, so the
projects don't have to be Java projects. Our first examples are about marine life.

25.1.1. Configuration and execution

Section 21.1, “Build phases’ describes the phases of every Gradle build. Let's zoom into the configuration
and execution phases of a multi-project build. Configuration here means executing the bui | d. gr adl e file
of a project, which implies e.g. downloading al plugins that were declared using 'appl y pl ugi n'. By
default, the configuration of all projects happens before any task is executed. This means that when a single
task, from a single project is requested, all projects of multi-project build are configured first. The reason
every project needs to be configured is to support the flexibility of accessing and changing any part of the
Gradle project model.

Configuration on demand

The Configuration injection feature and access to the complete project model are possible because every
project is configured before the execution phase. Y et, this approach may not be the most efficient in a very
large multi-project build. There are Gradle builds with a hierarchy of hundreds of subprojects. The
configuration time of huge multi-project builds may become noticeable. Scalability is an important
requirement for Gradle. Hence, starting from version 1.4 a new incubating 'configuration on demand' mode
isintroduced.

Configuration on demand mode attempts to configure only projects that are relevant for requested tasks, i.e.
it only executes the bui | d. gr adl e file of projects that are participating in the build. This way, the
configuration time of alarge multi-project build can be reduced. In the long term, this mode will become the
default mode, possibly the only mode for Gradle build execution. The configuration on demand feature is

Page 226 of 605

incubating so not every build is guaranteed to work correctly. The feature should work very well for
multi-project builds that have decoupled projects (Section 25.9, “Decoupled Projects’). In “configuration on
demand” mode, projects are configured as follows:

® Theroot project is always configured. Thisway the typical common configuration is supported
(alprojects or subprojects script blocks).

® The project in the directory where the build is executed is a so configured, but only when Gradle is
executed without any tasks. This way the default tasks behave correctly when projects are configured on
demand.

® The standard project dependencies are supported and makes relevant projects configured. If project A
has a compile dependency on project B then building A causes configuration of both projects.

* Thetask dependencies declared viatask path are supported and cause relevant projectsto be configured.
Example: someTask.dependsOn(":someOtherProject:someOther Task™)

* A task requested viatask path from the command line (or Tooling API) causes the relevant project to be
configured. For example, building 'projectA:projectB:someTask' causes configuration of projectB.

Eager to try out this new feature? To configure on demand with every build run see Section 12.1,
“Configuring the build environment via gradle.properties’. To configure on demand just for a given build
please see Appendix D, Gradle Command Line.

25.1.2. Defining common behavior

Let'slook at some examples with the following project tree. Thisis a multi-project build with a root project
named wat er and a subproject named bl uewhal e.

Example 25.1. M ulti-project tree - water & bluewhale projects

Build layout

wat er /
bui | d. gradl e

settings. gradle
bl uewhal e/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/first Exang
inthe‘-al’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewnhal e'

And where is the build script for the bl uewhal e project? In Gradle build scripts are optional. Obviously
for asingle project build, a project without a build script doesn't make much sense. For multiproject builds
the situation is different. Let'slook at the build script for the wat er project and executeit:

Page 227 of 605

Example 25.2. Build script of water (parent) project
buil d. gradl e

Closure cl = { task -> println "I'm $task. proj ect.nane" }
task(' hello"). doLast (cl)

project (' :bluewhale") {
task(' hell o). doLast (cl)

}

Output of gradl e -q hell o

> gradle -q hello
I'' m wat er
1" m bl uewhal e

Gradle allows you to access any project of the multi-project build from any build script. The Project API
provides a method called pr oj ect () , which takes a path as an argument and returns the Project object for
this path. The capability to configure a project build from any build script we call cross project
configuration. Gradle implements this via configuration injection.

We are not that happy with the build script of the wat er project. It isinconvenient to add the task explicitly
for every project. We can do better. Let's first add another project called kri | | to our multi-project build.
Example 25.3. Multi-project tree - water, bluewhale & krill projects

Build layout

wat er /
bui | d. gradl e

settings. gradle
bl uewhal e/
krill/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/addKrill/v
inthe *-all’ distribution of Gradle.

settings.gradle

i ncl ude ' bl uewhale', "krill'

Now we rewrite the wat er build script and boil it down to asingleline.

Page 228 of 605

Example 25.4. Water project build script
buil d. gradl e

al | projects {
task hello {
doLast { task ->

println "I'm $t ask. proj ect. nane"

Output of gradl e -q hell o

> gradle -q hello
I'''mwat er

1" m bl uewhal e
I"mkrill

Is this coal or is this cool? And how does this work? The Project API provides a property al | proj ects
which returns a list with the current project and all its subprojects underneath it. If you call al | proj ects
with a closure, the statements of the closure are delegated to the projects associated with al | pr oj ect s.
You could also do aniteration viaal | pr oj ect s. each, but that would be more verbose.

Other build systems use inheritance as the primary means for defining common behavior. We also offer
inheritance for projects as you will see later. But Gradle uses configuration injection as the usual way of
defining common behavior. We think it provides a very powerful and flexible way of configuring
multiproject builds.

Another possibilty for sharing configuration is to use a common external script. See Section 42.3,
“Configuring the project using an externa build script” for more information.

25.2. Subproject configuration

The Project API aso provides a property for accessing the subprojects only.

Page 229 of 605

25.2.1. Defining common behavior

Example 25.5. Defining common behavior of all projects and subprojects

bui |l d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $task. proj ect. nane"

}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"

Output of gradl e -q hello

> gradle -q hello
1" mwat er

1" m bl uewhal e

- | depend on water
I"mkrill

- | depend on water

Y ou may notice that there are two code snippets referencing the “hel | 0” task. The first one, which uses the

“t ask” keyword, constructs the task and provides it's base configuration. The second piece doesn't usethe“t ask
" keyword, as it is further configuring the existing “hel | 0” task. You may only construct atask oncein a
project, but you may add any number of code blocks providing additional configuration.

25.2.2. Adding specific behavior

Y ou can add specific behavior on top of the common behavior. Usually we put the project specific behavior
in the build script of the project where we want to apply this specific behavior. But as we have already seen,
we don't have to do it this way. We could add project specific behavior for the bl uewhal e project like
this:

Page 230 of 605

Example 25.6. Defining specific behaviour for particular project

bui | d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"

}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"

}
}
}

project (' :bluewhale').hello {
doLast {
println "- I"'mthe largest aninmal that has ever lived on this planet."

}

Output of gradl e -q hello

> gradle -q hello

I'''mwat er

1" m bl uewhal e

- | depend on water

- I"'mthe largest aninmal that has ever lived on this planet.
I"'mkrill

- | depend on water

Aswe have said, we usually prefer to put project specific behavior into the build script of this project. Let's
refactor and also add some project specific behavior tothekri | | project.

Example 25.7. Defining specific behaviour for project krill

Page 231 of 605

Build layout

wat er/
bui | d. gradl e
settings. gradle
bl uewhal e/

bui | d. gradl e
krill/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ spreadSpec
inthe*-all’ distribution of Gradle.

settings.gradle

i nclude ' bl uewhale', 'krill'

bl uewhal e/ bui | d. gradl e

hel | 0. doLast {
println "- I'mthe |largest animal that has ever lived on this planet."

}

krill/build.gradle

hel | 0. doLast {
println "- The wei ght of nmy species in summer is twi ce as heavy as all human

}

bui | d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"
}
}
}

subproj ects {
hell o {
doLast {
println "- | depend on water"

Output of gradl e -q hello

> gradle -q hello

I'"'m wat er

I'''m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.

I"mkrill

- | depend on water

- The weight of ny species in sumrer is twice as heavy as all human bei ngs

Page 232 of 605

25.2.3. Project filtering

To show more of the power of configuration injection, let's add another project called t r opi cal Fi sh and
add more behavior to the build via the build script of the wat er project.

Page 233 of 605

Filtering by name

Page 234 of 605

Example 25.8. Adding custom behaviour to some projects (filtered by project name)

Build layout

wat er /
bui |l d. gradl e
settings. gradle
bl uewhal e/

bui | d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ addTr opi c¢
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude 'bluewhale', "krill', 'tropical Fish

bui | d. gradl e

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"
}
}
}
subproj ects {
hell o {
doLast {
println "- | depend on water"
}
}

}
configure(subprojects.findAll {it.nanme != "tropical Fish'}) {
hell o {
doLast {
println '- | love to spend tinme in the arctic waters.

Output of gradl e -q hell o

> gradle -q hello

1" mwat er

1" m bl uewhal e

| depend on water

- | love to spend tine in the arctic waters.

- I"'mthe largest animal that has ever lived on this planet.
I"'mkrill

- | depend on water

- | love to spend tine in the arctic waters.

- The weight of ny species in sumrer is twice as heavy as all human beings
I"'mtropical Fi sh

I depend on water

Page 235 of 605

Theconfi gur e() method takes alist as an argument and applies the configuration to the projectsin this
list.

Filtering by properties

Using the project name for filtering is one option. Using extra project properties is another. (See
Section 17.4.2, “Extra properties’ for more information on extra properties.)

Example 25.9. Adding custom behaviour to some projects (filtered by project properties)

Build layout

wat er /
bui | d. gradl e
settings. gradle
bl uewhal e/

bui |l d. gradl e
krill/

bui | d. gradl e
tropi cal Fi sh/

bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/tropi cal W
inthe‘-al’ distribution of Gradle.

settings.gradle

i nclude ' bluewhale', "krill', 'tropical Fish'

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hel | 0. doLast {
println "- I'mthe |largest aninmal that has ever lived on this planet."

}

krill/build.gradle

ext.arctic = true
hel | 0. doLast {
println "- The weight of my species in sumer is twice as heavy as all humar

}

tropi cal Fi sh/ bui |l d. gradl e

ext.arctic = fal se

bui |l d. gradl e

Page 236 of 605

al | projects {
task hello {
doLast { task ->
println "I'm $t ask. proj ect. nane"

}
}
}
subproj ects {
hell o {

doLast {println "- | depend on water"}
afterEvaluate { Project project ->
if (project.arctic) { doLast {
println '- | love to spend tinme in the arctic waters.

Outputof gradl e -q hello

> gradle -q hello

I'"'mwat er

1" m bl uewhal e

- | depend on water

- I"'mthe largest animal that has ever lived on this planet.
- | love to spend tine in the arctic waters.

I"mkrill

- | depend on water

- The weight of ny species in summer is twice as heavy as all human beings
| love to spend tinme in the arctic waters.
I"'mtropical Fi sh

- | depend on water

In the build file of the wat er project weuse an af t er Eval uat e notification. This means that the closure
we are passing gets evaluated after the build scripts of the subproject are evaluated. As the property ar cti c
is set in those build scripts, we have to do it this way. You will find more on this topic in Section 25.6,
“Dependencies - Which dependencies?’

25.3. Execution rules for multi-project builds

When we executed the hel | o task from the root project dir, things behaved in an intuitive way. All the hel | o
tasks of the different projects were executed. Let's switch to the bl uewhal e dir and see what happens if
we execute Gradle from there.

Example 25.10. Running build from subpr oj ect

Output of gradl e -q hello

\%

gradle -q hello
"'m bl uewhal e

I depend on water

I"'mthe largest animal that has ever lived on this planet.
I love to spend tinme in the arctic waters.

Page 237 of 605

The basic rule behind Gradl€e's behavior is simple. Gradle looks down the hierarchy, starting with the
current dir, for tasks with the name hel | o and executes them. One thing is very important to note. Gradle
always evaluates every project of the multi-project build and creates all existing task objects. Then,
according to the task name arguments and the current dir, Gradle filters the tasks which should be executed.
Because of Gradle's cross project configuration every project has to be evaluated before any task gets
executed. We will have a closer look at this in the next section. Let's now have our last marine example.
Let'sadd atask to bl uewhal e andkri | I .

Example 25.11. Evaluation and execution of projects

bl uewhal e/ bui | d. gradl e

ext.arctic = true
hell o {
doLast {
println "- I"'mthe |argest aninmal that has ever lived on this planet."

}
}

task di stanceTol ceberg {
doLast {
println '20 nautical mles’

}

krill/build.gradle

ext.arctic = true
hel l o {
doLast {
println "- The weight of my species in sumer is twice as heavy as all
}
}

task di stanceTol ceberg {
doLast {
println '5 nautical mles'

}

Output of gradl e -qg di stanceTol ceberg

> gradle -q distanceTol ceberg
20 nautical mles
5 nautical niles

Here's the output without the - g option:

Page 238 of 605

Example 25.12. Evaluation and execution of projects
Output of gr adl e di st anceTol ceberg

> gradl e di stanceTol ceberg

. bl uewhal e: di st anceTol ceberg
20 nautical mles
ckrill:distanceTol ceberg

5 nautical mles

BU LD SUCCESSFUL

Total tinme: 1 secs

The build is executed from the wat er project. Neither wat er nor t r opi cal Fi sh have a task with the
name di st anceTol ceber g. Gradle does not care. The simple rule mentioned already above is. Execute
all tasks down the hierarchy which have this name. Only complain if thereis no such task!

25.4. Running tasks by their absolute path

As we have seen, you can run a multi-project build by entering any subproject dir and execute the build
from there. All matching task names of the project hierarchy starting with the current dir are executed. But
Gradle also offers to execute tasks by their absolute path (see also Section 25.5, “Project and task paths’):

Example 25.13. Running tasks by their absolute path
Outputof gradle -q :hello :krill:hello hello

> gradle -q :hello :krill:hello hello

I'"'mwat er

I"mkrill

- | depend on water
The wei ght of ny species in sumer is twice as heavy as all human bei ngs.
I love to spend tine in the arctic waters.

I"mtropical Fi sh

| depend on water

The build is executed fromthet r opi cal Fi sh project. We executethe hel | o tasks of thewat er , thekri | |
and the t r opi cal Fi sh project. The first two tasks are specified by their absolute path, the last task is
executed using the name matching mechanism described above.

25.5. Project and task paths

A project path has the following pattern: It starts with an optional colon, which denotes the root project. The
root project is the only project in a path that is not specified by its name. The rest of a project path is a
colon-separated sequence of project names, where the next project is a subproject of the previous project.

The path of atask is simply its project path plus the task name, like “: bl uewhal e: hel | 0”. Within a
project you can address atask of the same project just by its name. Thisis interpreted as arelative path.

Page 239 of 605

25.6. Dependencies - Which dependencies?

The examples from the last section were special, as the projects had no Execution Dependencies. They had
only Configuration Dependencies. The following sections illustrate the differences between these two types
of dependencies.

Page 240 of 605

25.6.1. Execution dependencies

Dependencies and execution order

Example 25.14. Dependencies and execution order

Build layout

nessages/
settings. gradle
consuner/

bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenci
inthe‘-al’ distribution of Gradle.

settings.gradle

i ncl ude 'consuner', 'producer’

consuner/ bui | d. gradl e

task action {
doLast {
println("Consum ng nmessage: ${root Project.producer Message}")

}

producer/ buil d. gradl e

task action {
doLast {
println "Produci ng nessage: "

root Proj ect. producer Message = ' Watch the order of execution.

Output of gradl e -qg action

> gradle -q action
Consum ng nmessage: nul |
Pr oduci ng nessage:

Thisdidn't quite do what we want. If nothing else is defined, Gradle executes the task in a phanumeric order.
Therefore, Gradle will execute “: consuner: acti on” before “: producer: action”. Let's try to
solve thiswith a hack and rename the producer project to “aPr oducer .

Page 241 of 605

Example 25.15. Dependencies and execution or der

Build layout

nessages/
settings.gradle
aPr oducer/

bui | d. gradl e
consuner/
bui |l d. gradl e

settings.gradle

i ncl ude ' consuner', 'aProducer'

aProducer/buil d. gradl e

task action {
doLast {
println "Produci ng nessage: "
root Proj ect. producer Message = ' Watch the order of execution.

consumer/ bui | d. gradl e

task action {
doLast {
println("Consum ng nmessage: ${root Project.producer Message}")

}

Output of gradl e -g action
> gradle -q action

Pr oduci ng nessage:
Consumi ng nessage: Watch the order of execution

We can show where this hack doesn't work if we now switch to the consuner dir and execute the build.

Example 25.16. Dependencies and execution or der
Output of gradl e -g action

> gradle -q action
Consumi ng nessage: nul

The problem is that the two “act i on” tasks are unrelated. If you execute the build from the “nessages”
project Gradle executes them both because they have the same name and they are down the hierarchy. In the
last example only one “act i on” task was down the hierarchy and therefore it was the only task that was
executed. We need something better than this hack.

Page 242 of 605

Declaring dependencies
Example 25.17. Declaring dependencies

Build layout

nessages/
settings. gradl e
consuner/

bui | d. gradl e
pr oducer/
bui | d. gradl e

Note: The code for this example can be found at sanpl es/ user gui de/ mul t i proj ect/ dependenci
inthe ‘-all’ distribution of Gradle.

settings.gradle

i ncl ude ' consuner', ' producer’

consuner/bui |l d. gradl e

task acti on(dependsOn: ":producer:action”) {
doLast {
println("Consuni ng nessage: ${rootProject.producer Message}")

}

producer/buil d. gradl e

task action {
doLast {
println "Produci ng nessage:"

root Proj ect. producer Message = 'Watch the order of execution.

Output of gradl e -g action

> gradle -q action
Pr oduci ng nessage:
Consumi ng nessage: Watch the order of execution

Running thisfrom the consumner directory gives:

Example 25.18. Declaring dependencies
Output of gradl e -g action

> gradle -q action
Pr oduci ng nessage:
Consumi ng nmessage: Watch the order of execution.

This is now working better because we have declared that the “act i on” task in the “consuner ” project
has an execution dependency onthe“act i on” task inthe“pr oducer ” project.

Page 243 of 605

The nature of cross project task dependencies

Of course, task dependencies across different projects are not limited to tasks with the same name. Let's
change the naming of our tasks and execute the build.

Example 25.19. Cross project task dependencies

consuner/bui |l d. gradl e

task consunme(dependsOn: ':producer: produce') ({
doLast {

println("Consum ng nessage: ${root Project.producer Message}")

}

producer/ buil d. gradl e

task produce {
doLast {
println "Produci ng nessage: "

root Proj ect. producer Message = 'Watch the order of execution.

Output of gr adl e -g consune

> gradle -q consune
Pr oduci ng nessage:
Consumi ng message: Watch the order of execution.

25.6.2. Configuration time dependencies

Let's see one more example with our producer-consumer build before we enter Java land. We add a
property to the “pr oducer ” project and create a configuration time dependency from “consuner ” to “pr oduc

Example 25.20. Configuration time dependencies

consurmer/ bui |l d. gradl e

def nmessage = root Project. producer Message

task consune {
doLast {
println("Consunm ng nessage: " + nmessage)

}

producer/ buil d. gradl e

root Proj ect. producer Message = ' Watch the order of evaluation.'

Output of gradl e -g consune

> gradle -q consune
Consum ng message: nul |

Page 244 of 605

The default evaluation order of projectsis alphanumeric (for the same nesting level). Therefore the“consurner
" project is evaluated before the “pr oducer ” project and the “pr oducer Message” value is set after it
isread by the“consumer ” project. Gradle offers a solution for this.

Example 25.21. Configuration time dependencies - evaluationDependsOn

consuner/ bui |l d. gradl e

eval uat i onDependsOn(' : producer ')

def nessage = root Project. producer Message

task consume {
doLast {
println("Consunm ng nessage: " + nmessage)

}

Output of gradl e -g consune

> gradle -q consune
Consumi ng nessage: Watch the order of eval uation.

The use of the “eval uati onDependsOn” command results in the evaluation of the “pr oducer”
project before the “consuner” project is evaluated. This example is a bit contrived to show the
mechanism. In this case there would be an easier solution by reading the key property at execution time.

Example 25.22. Configuration time dependencies

consuner/ bui | d. gradl e

task consune {
doLast {
println("Consum ng nmessage: ${root Project.producer Message}")

}

Output of gr adl e -g consune

> gradle -q consune
Consumi ng nessage: Watch the order of eval uation.

Configuration dependencies are very different from execution dependencies. Configuration dependencies
are between projects whereas execution dependencies are aways resolved to task dependencies. Also note
that all projects are always configured, even when you start the build from a subproject. The default
configuration order is top down, which is usually what is needed.

To change the default configuration order to “bottom up”, use the “eval uat i onDependsOnChi | dren()
" method instead.

On the same nesting level the configuration order depends on the alphanumeric position. The most common
use case is to have multi-project builds that share a common lifecycle (e.g. all projects use the Java plugin).
If you declare with dependsOn a execution dependency between different projects, the default behavior of

Page 245 of 605

this method is to also create a configuration dependency between the two projects. Therefore it islikely that
you don't have to define configuration dependencies explicitly.

25.6.3. Redl life examples

Gradle's multi-project features are driven by real life use cases. One good example consists of two web
application projects and a parent project that creates a distribution including the two web applications. [19]
For the example we use only one build script and do cross project configuration.

Example 25.23. Dependencies - real life example - crossproject configuration

Build layout

webDi st/
settings. gradle
bui |l d. gradl e
dat e/
src/ mai n/ j aval

or g/ gradl e/ sanpl e/
Dat eServl et . j ava
hel | o/
src/ mai n/ j aval
or g/ gradl e/ sanpl e/
Hel | oServl et.java

Note: The code for this example can be found at sanpl es/ user gui de/ rmul t i proj ect/ dependenci
inthe ‘-all’ distribution of Gradle.

settings.gradle

include 'date', '"hello

bui |l d. gradl e

al | projects {
apply plugin: 'java
group = 'org.gradl e.sanpl e
version = '1. 0

}

subproj ects {
apply plugin: '"war'
repositories {
mavenCentral ()
}
dependenci es {
conpile "javax. servl et:servlet-api:2. 5"

}

}

t ask expl odedDi st (type: Copy) {
into "$buil dDi r/ expl odedDi st "
subproj ects {

fromtasks. withType(War)
}

Page 246 of 605

We have an interesting set of dependencies. Obviously the dat e and hel | o projects have a configuration
dependency on webDi st , as all the build logic for the webapp projects is injected by webDi st . The
execution dependency isin the other direction, aswebDi st depends on the build artifacts of dat e and hel | o
. There is even a third dependency. webDi st has a configuration dependency on dat e and hel | o
because it needs to know the ar chi vePat h. But it asks for this information at execution time. Therefore
we have no circular dependency.

Such dependency patterns are daily bread in the problem space of multi-project builds. If a build system
does not support these patterns, you either can't solve your problem or you need to do ugly hacks which are
hard to maintain and massively impair your productivity as a build master.

25.7. Project lib dependencies

What if one project needs the jar produced by another project in its compile path, and not just the jar but also
the transitive dependencies of this jar? Obviously this is a very common use case for Java multi-project
builds. As aready mentioned in Section 24.4.3, “Project dependencies’, Gradle offers project lib
dependencies for this.

Example 25.24. Project lib dependencies
Build layout

j aval/
settings. gradle
bui | d. gradl e
api /
src/ mai n/j aval
or g/ gradl e/ sanpl e/
api /
Person. j ava
api | mpl /
Per sonl npl . j ava
servi ces/ personServi ce/
src/
mai n/ j ava/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ce. j ava
test/javal/
or g/ gradl e/ sanpl e/ servi ces/
Per sonServi ceTest . j ava
shar ed/
src/ mai n/j aval
or g/ gradl e/ sanpl e/ shar ed/
Hel per.j ava

Note: The code for this example can be found at sanpl es/ user gui de/ mul ti proj ect/ dependenci
inthe ‘-all’ distribution of Gradle.

We have the projects “shar ed”, “api ” and “per sonSer vi ce”. The“per sonSer vi ce” project hasa
lib dependency on the other two projects. The “api ” project has a lib dependency on the “shar ed”
project. [16]

Page 247 of 605

Example 25.25. Project lib dependencies

settings.gradle

include "api', 'shared', 'services: personService

bui |l d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanple'
version = '1. 0
repositories {
mavenCentral ()
}
dependenci es {
testConpile "junit:junit:4.12"
}
}

project (' :api') {
dependenci es {
conpil e project(':shared")
}
}

proj ect (' :services: personService') {
dependenci es {
conpile project(':shared"), project(':api

}

)

All the build logicisinthe“bui | d. gr adl e” file of the root project. 71 A “lib” dependency is a special
form of an execution dependency. It causes the other project to be built first and adds the jar with the classes
of the other project to the classpath. It also adds the dependencies of the other project to the classpath. So
you can enter the “api ” directory and trigger a“gr adl e conpi | e”. First the “shar ed” project is built
and then the “api " project is built. Project dependencies enable partial multi-project builds.

If you come from Maven land you might be perfectly happy with this. If you come from Ivy land, you might

expect some more fine grained control. Gradle offers thisto you:

Page 248 of 605

Example 25.26. Fine grained control over dependencies
buil d. gradl e

subproj ects {
apply plugin: 'java
group = 'org.gradle.sanpl e’
version = '1.0

}

project(':api') {
configurations {
sp
}
dependenci es {
conpil e project(':shared")
}
task spiJar(type: Jar) {
baseNane = 'api - spi
dependsOn cl asses
from sour ceSet s. nai n. out put
i ncl ude("' org/ gradl e/ sanpl e/ api /**")
}
artifacts {
spi spiJar
}
}

proj ect (' :services: personService') ({
dependenci es {
conpil e project(':shared")
conpil e project(path: ':api', configuration
testConpile "junit:junit:4. 12", project(':api

The Java plugin adds per default ajar to your project libraries which contains all the classes. In this example
we create an additional library containing only the interfaces of the “api ” project. We assign this library to
anew dependency configuration. For the person service we declare that the project should be compiled only

against the “api " interfaces but tested with all classes from “api ”.

25.7.1. Disabling the build of dependency projects

Sometimes you don't want depended on projects to be built when doing a partia build. To disable the build

of the depended on projects you can run Gradle with the - a option.

25.8. Parallel project execution

With more and more CPU cores available on developer desktops and Cl servers, it isimportant that Gradle
isableto fully utilise these processing resources. More specificaly, the parallel execution attempts to:

® Reduce tota build time for a multi-project build where execution is 10 bound or otherwise does not

consume all available CPU resources.

* Provide faster feedback for execution of small projects without awaiting completion of other projects.

Page 249 of 605

Although Gradle already offers parallel test execution via Test . set MaxPar al | el Forks(i nt) the
feature described in this section is parallel execution at a project level. Parallel execution is an incubating
feature. Please use it and let us know how it works for you.

Parallel project execution allows the separate projects in a decoupled multi-project build to be executed in
paralel (see also: Section 25.9, “Decoupled Projects’). While parallel execution does not strictly require
decoupling at configuration time, the long-term goal is to provide a powerful set of features that will be
available for fully decoupled projects. Such features include:

® the section called “Configuration on demand”.

® Configuration of projectsin parallel.

® Re-use of configuration for unchanged projects.

® Project-level up-to-date checks.

® Using pre-built artifacts in the place of building dependent projects.

How does parallel execution work? First, you need to tell Gradle to use the parallel mode. Y ou can use the
command line argument (Appendix D, Gradle Command Line) or configure your build environment (
Section 12.1, “Configuring the build environment via gradle.properties’). Unless you provide a specific
number of paralel threads Gradle attempts to choose the right number based on available CPU cores. Every
parallel worker exclusively owns a given project while executing a task. This means that 2 tasks from the
same project are never executed in parallel. Therefore only multi-project builds can take advantage of
parallel execution. Task dependencies are fully supported and parallel workers will start executing upstream
tasks first. Bear in mind that the alphabetical scheduling of decoupled tasks, known from the sequential
execution, does not really work in parallel mode. Y ou need to make sure the task dependencies are declared
correctly to avoid ordering issues.

Warning: Be aware that task ordering is not strictly enforced when using parallel execution and can lead to
unexpected results. A common case that surfaces this limitation is the use of the cl ean task provided by
the base plugin in combination with any other task producing an output for a multi-project build if
executed in parallel. For example let us assume a multi-project build with project A and project B where B
dependson A. Running gr adl e cl ean build --parall el couldlead tothefollowing situation:

* A: cl ean isexecuted after A: j ar .
* B dependson A and needsthe JAR file of A. However, B: cl asses falsasit was executed after A: cl ean
which deleted the JAR file B depends on for compilation.

Furthermore, thetasks cl ean and cl asses could run at the same time and delete files that are needed for
compilation across project boundaries. Gradle emits a warning for those situations. Future versions of
Gradle will provide an appropriate fix.

25.9. Decoupled Projects

Gradle alows any project to access any other project during both the configuration and execution phases.
While this provides a great deal of power and flexibility to the build author, it also limits the flexibility that
Gradle has when building those projects. For instance, this effectively prevents Gradle from correctly
building multiple projects in parallel, configuring only a subset of projects, or from substituting a pre-built
artifact in place of a project dependency.

Page 250 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/tasks/testing/Test.html#setMaxParallelForks(int)

Two projects are said to be decoupled if they do not directly access each other's project model. Decoupled
projects may only interact in terms of declared dependencies: project dependencies (Section 24.4.3, “ Project
dependencies’) and/or task dependencies (Section 15.5, “Task dependencies’). Any other form of project
interaction (i.e. by modifying another project object or by reading a value from another project object)
causes the projects to be coupled. The consequence of coupling during the configuration phase is that if
gradle is invoked with the 'configuration on demand' option, the result of the build can be flawed in severa
ways. The consequence of coupling during execution phase is that if gradle is invoked with the parallel
option, one project task runs too late to influence a task of a project building in parallel. Gradle does not
attempt to detect coupling and warn the user, as there are too many possibilities to introduce coupling.

A very common way for projects to be coupled is by using configuration injection (Section 25.1, “Cross
project configuration”). It may not be immediately apparent, but using key Gradle features likethe al | pr oj ect ¢
and subpr oj ect s keywords automatically cause your projects to be coupled. This is because these
keywords are used in a bui | d. gr adl e file, which defines a project. Often this is a “root project” that
does nothing more than define common configuration, but as far as Gradle is concerned this root project is

still a fully-fledged project, and by using al | pr oj ect s that project is effectively coupled to all other
projects. Coupling of the root project to subprojects does not impact ‘configuration on demand', but using the

al | proj ect s andsubpr oj ect s inany subproject'sbui | d. gr adl e filewill have an impact.

This means that using any form of shared build script logic or configuration injection (al | pr oj ect s, subpr 0j
, etc.) will cause your projects to be coupled. As we extend the concept of project decoupling and provide
features that take advantage of decoupled projects, we will aso introduce new features to help you to solve
common use cases (like configuration injection) without causing your projects to be coupled.

In order to make good use of cross project configuration without running into issues for parallel and
‘configuration on demand' options, follow these recommendations:

* Avoid asubproject'sbui | d. gr adl e referencing other subprojects; prefering cross configuration from
the root project.
® Avoid changing the configuration of other projects at execution time.

25.10. Multi-Project Building and Testing

The bui | d task of the Java plugin is typically used to compile, test, and perform code style checks (if the
CodeQuality plugin is used) of asingle project. In multi-project builds you may often want to do all of these
tasks across arange of projects. The bui | dNeeded and bui | dDependent s tasks can help with this.

Look at Example 25.25, “Project lib dependencies’. In this example, the“: ser vi ces: per sonservi ce
" project depends on both the“: api ” and “: shar ed” projects. The“: api ” project also depends onthe“: shar
" project.

Assume you are working on a single project, the “: api ” project. You have been making changes, but have
not built the entire project since performing a clean. You want to build any necessary supporting jars, but
only perform code quality and unit tests on the project you have changed. The bui | d task does this.

Page 251 of 605

Example 25.27. Build and Test Single Proj ect

Output of gr adl e : api : build

> gradle :api:build
:shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

:api: conpi |l eJava

:api : processResour ces
capi:cl asses

rapi:jar

:api:assenbl e
;api:conpi |l eTest Java
:api: processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

BUI LD SUCCESSFUL

Total tinme: 1 secs

While you are working in atypical development cycle repeatedly building and testing changesto the “: api

" project (knowing that you are only changing files in this one project), you may not want to even suffer the
expense of building “: shar ed: conpi | e” to see what has changed in the “: shar ed” project. Adding
the “- a” option will cause Gradle to use cached jars to resolve any project lib dependencies and not try to

re-build the depended on projects.

Example 25.28. Partial Build and Test Single Project

Outputof gradl e -a :api:build

> gradle -a :api:build
rapi:conpil eJava

: api : processResour ces
;api:cl asses

rapi:jar

rapi:assenbl e

:api: conpil eTest Java

:api : processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

BU LD SUCCESSFUL

Total tinme: 1 secs

If you have just gotten the latest version of source from your version control system which included changes
in other projects that “: api " depends on, you might want to not only build all the projects you depend on,
but test them as well. The bui | dNeeded task also tests all the projects from the project lib dependencies

of the testRuntime configuration.

Page 252 of 605

Example 25.29. Build and Test Depended On Projects
Output of gr adl e : api : bui | dNeeded

> gradl e :api:buil dNeeded
:shared: conpi | eJava

: shar ed: processResour ces
:shared: cl asses
:shared:jar

:api: conpi |l eJava

:api : processResour ces
capi:cl asses

rapi:jar

:api:assenbl e
;api:conpi |l eTest Java
:api: processTest Resour ces
;api:testd asses

rapi:test
:api : check
;api:build

:shared: assenbl e
:shared: conpi | eTest Java

: shar ed: processTest Resour ces
:shared: test Cl asses

:shared: test

: shar ed: check

:shared: build

: shar ed: bui | dNeeded

:api : bui | dNeeded

BU LD SUCCESSFUL

Total tinme: 1 secs

Y ou also might want to refactor some part of the “: api ” project that is used in other projects. If you make
these types of changes, it is not sufficient to test just the “: api ” project, you also need to test all projects
that depend on the “: api ” project. The bui | dDependent s task aso tests all the projects that have a

project lib dependency (in the testRuntime configuration) on the specified project.

Page 253 of 605

Example 25.30. Build and Test Dependent Projects

Output of gr adl e : api : bui | dDependent s

> gradl e :api: buil dDependent s

:shared: conpi | eJava

: shar ed: processResour ces

:shared: cl asses
:shared:jar
:api: conpi |l eJava

: api : processResour ces

capi:cl asses
rapi:jar
:api:assenbl e
;api:conpi |l eTest Java

;api: processTest Resour ces

;api:testd asses

rapi:test
:api : check
;api:build

:services: personServ
:services: personServ
:services: personServi
:services: personServi
:services: personServ
:services: personServ
:services: personServi
:services: personServi
:services: personServ
:services: personServ
:services: personServi
:services: personServi
:api : bui | dDependent s

BU LD SUCCESSFUL

Total tinme: 1 secs

ce:
ce:
ce:
ce:
ce:
ce:
. processTest Resour ces
ce:
ce:
ce:
ce:
ce:

ce

conpi | eJava
processResour ces
cl asses

jar

assenbl e
conpi | eTest Java

test C asses

t est

check

build

bui | dDependent s

Finally, you may want to build and test everything in all projects. Any task you run in the root project folder
will cause that same named task to be run on al the children. So you can just run “gr adl e bui | d” to

build and test all projects.

25.11. Multi Project and buildSrc

Section 42.4, “Build sourcesin the bui | dSr ¢ project” tells us that we can place build logic to be compiled
and tested in the special bui | dSr ¢ directory. In a multi project build, there can only be one bui | dSr ¢
directory which must be located in the root directory.

25.12. Property and method inheritance

Properties and methods declared in a project are inherited to all its subprojects. This is an alternative to
configuration injection. But we think that the model of inheritance does not reflect the problem space of
multi-project builds very well. In afuture edition of this user guide we might write more about this.

Page 254 of 605

Method inheritance might be interesting to use as Gradle's Configuration Injection does not support
methods yet (but will in afuture release).

Y ou might be wondering why we have implemented a feature we obviously don't like that much. One reason
isthat it is offered by other tools and we want to have the check mark in a feature comparison :). And we
like to offer our users a choice.

25.13. Summary

Writing this chapter was pretty exhausting and reading it might have a similar effect. Our final message for

this chapter is that multi-project builds with Gradle are usually not difficult. There are five elements you

need to remember: al | pr oj ect s, subpr oj ect s, eval uati onDependsOn, eval uati onDependsOnC
and project lib dependencies. (18] with those elements, and keeping in mind that Gradle has a distinct
configuration and execution phase, you already have a lot of flexibility. But when you enter steep territory
Gradle does not become an obstacle and usually accompanies and carries you to the top of the mountain.

[15] The real use case we had, was using http://lucene.apache.org/solr, where you need a separate war for
each index you are accessing. That was one reason why we have created a distribution of webapps. The
Resin servlet container allows us, to let such a distribution point to a base installation of the servlet
container.

[16] “ser vi ces” isaso aproject, but we use it just as a container. It has no build script and gets nothing
injected by another build script.

[17] We do this here, as it makes the layout a bit easier. We usually put the project specific stuff into the
build script of the respective projects.

[18] So we are well in the range of the 7 plus 2 Rule :)

Page 255 of 605

http://lucene.apache.org/solr
http://en.wikipedia.org/wiki/The_Magical_Number_Seven,_Plus_or_Minus_Two

26

Gradle Plugins

Gradle at its core intentionally provides very little for real world automation. All of the useful features, like
the ability to compile Java code, are added by plugins. Plugins add new tasks (e.g. JavaConpi | e),
domain objects (e.g. Sour ceSet), conventions (e.g. Java source is located at sr ¢/ mai n/ j ava) as well
as extending core objects and objects from other plugins.

In this chapter we discuss how to use plugins and the terminology and concepts surrounding plugins.

26.1. What plugins do

Applying aplugin to a project allows the plugin to extend the project's capabilities. It can do things such as:

* Extend the Gradle model (e.g. add new DSL elements that can be configured)
® Configure the project according to conventions (e.g. add new tasks or configure sensible defaults)
* Apply specific configuration (e.g. add organizational repositories or enforce standards)

By applying plugins, rather than adding logic to the project build script, we can reap a number of benefits.
Applying plugins:

® Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects
* Allows ahigher degree of modularization, enhancing comprehensibility and organization
® Encapsulatesimperative logic and allows build scripts to be as declarative as possible

26.2. Types of plugins

There are two general types of plugins in Gradle, script plugins and binary plugins. Script plugins are
additional build scripts that further configure the build and usually implement a declarative approach to
manipulating the build. They are typically used within a build although they can be externalized and
accessed from aremote location. Binary plugins are classes that implement the Pl ugi n interface and adopt
a programmatic approach to manipulating the build. Binary plugins can reside within a build script, within
the project hierarchy or externally in aplugin jar.

A plugin often starts out as a script plugin (because they are easy to write) and then, as the code becomes
more valuable, it's migrated to a binary plugin that can be easily tested and shared between multiple projects
or organizations.

Page 256 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.compile.JavaCompile.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.SourceSet.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/Plugin.html

26.3. Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needsto resolve
the plugin, and then it needs to apply the plugin to the target, usually a Pr oj ect .

Resolving a plugin means finding the correct version of the jar which contains a given plugin and adding it
the script classpath. Once a plugin is resolved, its APl can be used in a build script. Script plugins are
self-resolving in that they are resolved from the specific file path or URL provided when applying them.
Core binary plugins provided as part of the Gradle distribution are automatically resolved.

Applying a plugin means actually executing the plugin's Pl ugi n. appl y(T) on the Project you want to
enhance with the plugin. Applying plugins is idempotent. That is, you can safely apply any plugin multiple
times without side effects.

The most common use case for using a plugin is to both resolve the plugin and apply it to the current
project. Since this is such a common use case, it's recommended that build authors use the plugins DSL to
both resolve and apply plugins in one step. The feature is technically still incubating, but it works well, and
should be used by most users.

26.4. Script plugins

Example 26.1. Applying a script plugin
bui | d. gradl e

apply from 'other.gradle'

Script plugins are automatically resolved and can be applied from a script on the local filesystem or at a
remote location. Filesystem locations are relative to the project directory, while remote script locations are
specified with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

26.5. Binary plugins

You apply plugins by their plugin id, which is a globally unique identifier, or name, for plugins. Core
Gradle plugins are special in that they provide short names, such as' j ava' for the core JavaPl ugi n.
All other binary plugins must use the fully qualified form of the plugin id (e.g. com gi t hub. f 0o. bar),
although some legacy plugins may still utilize a short, unqualified form. Where you put the plugin id
depends on whether you are using the plugins DSL or the buildscript block.

26.5.1. Locations of binary plugins

A pluginissimply any class that implementsthe Pl ugi n interface. Gradle provides the core plugins (e.g. JavaP
) as part of its distribution which means they are automatically resolved. However, non-core binary plugins
need to be resolved before they can be applied. This can be achieved in a number of ways:

® Including the plugin from the plugin portal or a custom repository using the plugins DSL (see

Page 257 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/Plugin.html#apply(T)
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/Plugin.html

Section 26.5.2, “ Applying plugins with the plugins DSL").

¢ Including the plugin from an external jar defined as a buildscript dependency (see the section called
“Applying plugins with the buildscript block™).

* Defining the plugin as a source file under the buildSrc directory in the project (see Section 42.4, “Build
sourcesinthe bui | dSr ¢ project”).

® Defining the plugin as an inline class declaration inside a build script.

For more on defining your own plugins, see Chapter 40, Writing Custom Plugins.
26.5.2. Applying plugins with the plugins DSL

The plugins DSL is currently incubating. Please be aware that the DSL and other configuration may
changein later Gradle versions.

The new plugins DSL provides a succinct and convenient way to declare plugin dependencies. It works with
the Gradle plugin portal to provide easy access to both core and community plugins. The plugins DSL block
configures an instance of Pl ugi nDependenci esSpec.

To apply acore plugin, the short name can be used:

Example 26.2. Applying a core plugin
bui | d. gradl e

pl ugi ns {
id'java'

}

To apply acommunity plugin from the portal, the fully qualified plugin id must be used:

Example 26.3. Applying a community plugin

bui |l d. gradl e

pl ugi ns {
id "comjfrog. bintray" version "0.4.1"

}

See Pl ugi nDependenci esSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

This way of adding plugins to a project is much more than a more convenient syntax. The plugins DSL is
processed in a way which allows Gradle to determine the plugins in use very early and very quickly. This
allows Gradle to do smart things such as:

¢ Optimize the loading and reuse of plugin classes.
* Allow different plugins to use different versions of dependencies.
® Provide editors detailed information about the potential properties and values in the buildscript for

Page 258 of 605

http://plugins.gradle.org
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugin.use.PluginDependenciesSpec.html

editing assistance.

This requires that plugins be specified in a way that Gradle can easily and quickly extract, before executing
therest of the build script. It also requires that the definition of plugins to use be somewhat static.

There are some key differences between the new plugin mechanism and the “traditional” appl y() method
mechanism. There are also some constraints, some of which are temporary limitations while the mechanism
is till being developed and some are inherent to the new approach.

Constrained Syntax

The new pl ugi ns {} block does not support arbitrary Groovy code. It is constrained, in order to be
idempotent (produce the same result every time) and side effect free (safe for Gradle to execute at any time).

Theformis:

pl ugi ns {

id «plugin id» version «plugin version» [apply «fal se»]

}

Where «pl ugi n versi on» and «pl ugi n i d» must be constant, literal, strings and the appl y
statement with a bool ean can be used to disable the default behavior of applying the plugin immediately
(e.g. you want to apply it only in subpr oj ect s). No other statements are allowed; their presence will
cause a compilation error.

The pl ugi ns {} block must also be a top level statement in the buildscript. It cannot be nested inside
another construct (e.g. an if-statement or for-loop).

Can only be used in build scripts

The pl ugi ns {} block can currently only be used in a project's build script. It cannot be used in script
plugins, the settings.gradiefile or init scripts.

FEuture versions of Gradle will remove thisrestriction.

If the restrictions of the new syntax are prohibitive, the recommended approach isto apply plugins using the build:

Applying plugins to subprojects

If you have a multi-project build, you probably want to apply plugins to some or all of the subprojects in
your build, but not to ther oot or mast er project. The default behavior of the pl ugi ns {} block isto
immediately r esol ve and appl y the plugins. But, you can usethe appl y f al se syntax to tell Gradle
not to apply the plugin to the current project and then use appl y pl ugi n: «plugi n versi on» in
thesubpr oj ect s block:

Page 259 of 605

Example 26.4. Applying pluginsonly on certain subprojects.

settings.gradle

i ncl ude ' hel | oA

i nclude ' hel |l oB'
i ncl ude ' goodbyeC

bui |l d. gradl e

pl ugi ns {
id "org.gradl e.sanple. hello" version "1.0.0" apply false
id "org.gradl e. sanpl e. goodbye" version "1.0.0" apply false

}

subproj ects { subproject ->
i f (subproject.nane.startsWth("hello")) {
apply plugin: 'org.gradle.sanple.hello
}
i f (subproject.nane.startsWth("goodbye")) ({
apply plugin: 'org.gradle. sanpl e. goodbye
}

If youthenrungradl e hel | o you'll seethat only the helloA and helloB subprojects had the hello plugin
applied.

gr adl e/ subpr oj ect s/ docs/ src/ sanpl es/ pl ugi ns/ mul ti proj ect $> gradle hello
Paral | el execution is an incubating feature

:hel |l oA: hel |l o

:hell oB: hel | o

Hel | o!
Hel | o

BU LD SUCCESSFUL

Custom Plugin Repositories

The pl ugi nRepositories {} DSL is currently incubating. Please be aware that the DSL and
other configuration may changein later Gradle versions.

By default, the pl ugi ns {} DSL resolves plugins from the public Gradle Plugin Portal. Many build
authors would also like to resolve plugins from private Maven or lvy repositories because the plugins
contain proprietary implementation details, or just to have more control over what plugins are available to
their builds.

To specify custom plugin repositories, add a pl ugi nRepositories {} block to the
settings. gradl e file

Page 260 of 605

https://plugins.gradle.org

Example 26.5. Using plugins from custom plugin repositories.
settings.gradle

pl ugi nReposi tories {
maven {
url 'maven-repo'

}

gr adl ePl ugi nPortal ()
ivy {
url "ivy-repo'
}
}

This tells Gradle to first look in the Maven repository at maven- r epo when resolving plugins and then to
check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you don't want the
Gradle Plugin Portal to be searched, omit the gr adl ePl ugi nPort al () line. Finally, the Ivy repository
ati vy-repo will be checked.

The pl ugi nReposi tories {} block may only appear in the setti ngs. gr adl e file, and must be
the first block in the file. Custom Maven and Ivy plugin repositories must contain plugin marker artifactsin
addition to the artifacts which actually implement the plugin. For more information on publishing plugins to
custom repositories read Chapter 41, The Java Gradle Plugin Devel opment Plugin.

See Pl ugi nReposi t ori esSpec for complete documentation for using the pl ugi nReposi t ori es
{} block.

Plugin Marker Artifacts

Since the pl ugi ns {} DSL block only allows for declaring plugins by their globally unique plugin i d

and ver si on properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact. To do so, Gradle will look for a Plugin Marker Artifact with the coordinates pl ugi n. i d: pl ugi n. i d.
. This marker needs to have a dependency on the actual plugin implementation. Publishing these markersis
automated by the java-gradie-plugin.

For example, the following complete sample from the sanpl e- pl ugi ns project shows how to publishaor g. ¢
plugin and a or g. gr adl e. sanpl e. goodbye plugin to both an Ivy and Maven repository using the
combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish plugin.

Page 261 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugin.repository.PluginRepositoriesSpec.html

Example 26.6. Complete Plugin Publishing Sample

bui | d. gradl e

pl ugi ns {
id'java-gradl e-plugin'
id ' maven- publ i sh’
id 'ivy-publish'

}

group 'org.gradle.sanpl e
version '1.0.0

gradl ePl ugi n {
pl ugi ns {
hell o {
id = "org.gradl e. sanpl e. hel | 0"
i npl ement ati onCl ass = "org. gradl e. sanpl e. hel | 0. Hel | oPI ugi n"

}
goodbye {
id = "org.gradl e. sanpl e. goodbye"
i npl ement ati onCl ass = "org. gradl e. sanpl e. goodbye. GoodbyePI ugi n"

publ i shing {
repositories {
maven {
url "../consum ng/ maven-repo"

ivy {
url "../consum ng/ivy-repo"

Running gr adl e publ i sh inthe sample directory causes the following repo layouts to exist:

Page 262 of 605

~

./maven-repo

groupld org.gradle.sample.hello
artifactld org.gradle.sample.hello.gradle.plugin

groupld org.gradle.s
artifactld sample-ph

version 1.0.0 7 version 1.0.0
groupld org.gradle. sample.goodbye sampl !
artifactld org.gradie. sample.goodbye.gradle.plugin
version 1.0.0

_ g

/— .[ivy-repo
org org.gradle sample. hello org org.gradle.samp
moadule org.gradie.sample. hello.gradle.plugin maodule sample-pluc
rev 1.0.0 — rev 1.0.0

org org.gradle. sample.goodbye
module org.gradle. sample. goodbye.gradle.plugin
rev 1.0.0

sampl

\ 4

26.5.3. Legacy Plugin Application
With the introduction of the plugins DSL, users should have little reason to use the legacy method of
applying plugins. It is documented here in case a build author cannot use the plugins DSL due to restrictions
in how it currently works.

Applying Binary Plugins
Example 26.7. Applying a binary plugin
bui | d. gradl e

apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name ‘j ava’ to apply the
JavaPl ugi n.

Rather than using aplugin id, plugins can also be applied by ssimply specifying the class of the plugin:

Example 26.8. Applying a binary plugin by type
bui |l d. gradl e

apply plugin: JavaPl ugi n

The JavaPl ugi n symbol in the above sample refers to the the JavaPl ugi n. This class does not strictly
need to be imported as the or g. gr adl e. api . pl ugi ns package is automatically imported in al build

Page 263 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/plugins/JavaPlugin.html

scripts (see Section 17.8, “Default imports’). Furthermore, it is not necessary to append . cl ass to identify
aclassliteral in Groovy asitisin Java

Applying plugins with the buildscript block

Binary plugins that have been published as external jar files can be added to a project by adding the plugin
to the build script classpath and then applying the plugin. External jars can be added to the build script
classpath using the bui | dscri pt {} block as described in Section 42.6, “ External dependencies for the
build script”.

Example 26.9. Applying a plugin with the buildscript block
bui |l d. gradl e

bui | dscript {
repositories {
jcenter()
}
dependenci es {
cl asspath "com jfrog. bintray.gradl e: gradl e-bi ntray-pl ugin:0.4.1"

}

}

apply plugin: "comjfrog.bintray"

26.6. Finding community plugins

Gradle has a vibrant community of plugin developers who contribute plugins for a wide variety of
capabilities. The Gradle plugin portal provides an interface for searching and exploring community plugins.

26.7. More on plugins

This chapter aims to serve as an introduction to plugins and Gradle and the role they play. For more
information on the inner workings of plugins, see Chapter 40, Writing Custom Plugins.

Page 264 of 605

http://plugins.gradle.org

27

Standard Gradle plugins

There are anumber of pluginsincluded in the Gradle distribution. These are listed below.

27.1. Language plugins

These plugins add support for various languages which can be compiled for and executed in the VM.

Table 27.1. Language plugins

Plugin
Id

j ava

gr oovy

scal a

antlr

Automatically Works
applies with

j ava- base -

j ava, groovy- base

j ava, scal a- base

j ava -

Description

Adds Java compilation, testing and bundling capabilities to
aproject. It serves as the basis for many of the other Gradle
plugins. See also Chapter 45, Java Quickstart.

Adds support for building Groovy projects. See also
Chapter 53, Groovy Quickstart.

Adds support for building Scala projects.

Adds support for generating parsers using Antlr.

27.2. Incubating language plugins

These plugins add support for various languages:

Page 265 of 605

http://www.antlr.org/

Table 27.2. Language plugins

Plugin Id Automatically Works Description
applies with

assenbl er - - Adds native assembly language capabilities
to a project.

c - - Adds C source compilation capabilities to a
project.

cpp - - Adds C++ source compilation capabilities
to aproject.

obj ective-c - - Adds Objective-C source compilation

capabilities to a project.

obj ective-cpp Adds Objective-C++ source compilation

capabilities to a project.

W ndows-r esour ces Adds support for including Windows

resources in native binaries.

27.3. Integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 266 of 605

Table 27.3. Integration plugins

Plugin Id Automatically Works Description
applies with
application java,distribution Adds tasks for running and bundling a Java project

as a command-line application.

ear - j ava Adds support for building J2EE applications.

jetty war - Deploys your web application to a Jetty web
container embedded in the build. See also
Chapter 47, Web Application Quickstart. This
plugin is deprecated and will be removed in
Gradle 4.0. Consider using the more feature-rich
Gretty plugin instead.

maven - j ava, Adds support for publishing artifacts to Maven
war repositories.
osgi j ava- base j ava Adds support for building OSGi bundles.
war j ava - Adds support for assembling web application
WAR files. See also Chapter 47, Web Application
Quickstart.

27.4. Incubating integration plugins

These plugins provide some integration with various runtime technol ogies.

Page 267 of 605

https://github.com/akhikhl/gretty

Table 27.4. Incubating integration plugins

Plugin Id Automatically Works Description
applies with

di stribution - - Adds support for building
ZIP and TAR distributions.

java-library-distribution java,distribution Adds support for building
ZIP and TAR distributions
for aJavalibrary.

i vy-publish - j ava, This plugin provides a new
war DSL to support publishing

artifacts to lvy repositories,

which improves on the

existing DSL.
maven- publ i sh - j ava, This plugin provides a new
war DSL to support publishing

artifacts to Maven
repositories, which improves
on the existing DSL.

27.5. Software development plugins

These plugins provide help with your software development process.

Table 27.5. Softwar e development plugins

Plugin Id Automatically Works Description
applies with

announce - - Publish messages to your
favourite platforms, such as
Twitter or Growl.

bui | d- announcenent s announce - Sends local announcements to
your desktop about interesting
eventsin the build lifecycle.

checkstyl e j ava- base - Performs quality checks on your
project's Java source files using
Checkstyle and generates reports
from these checks.

Page 268 of 605

http://checkstyle.sourceforge.net/index.html

codenarc groovy- base - Performs quality checks on your
project's Groovy source files
using CodeNarc and generates
reports from these checks.

eclipse - j ava,gr ooBenerates files that are used by
,scala Eclipse IDE, thus making it
possible to import the project into
Eclipse. See also Chapter 45,
Java Quickstart.

eclipse-wp - ear,war Does the same as the eclipse
plugin plus generates eclipse
WTP (Web Tools Platform)
configuration files. After
importing to eclipse your war/ear
projects should be configured to
work with WTP. See also
Chapter 45, Java Quickstart.

fi ndbugs j ava- base - Performs quality checks on your
project's Java source files using
FindBugs and generates reports
from these checks.

i dea - j ava Generates files that are used by
Intellij IDEA IDE, thus making it
possible to import the project into
IDEA.

j depend j ava- base - Performs quality checks on your
project's source files using
JDepend and generates reports
from these checks.

prd j ava- base - Performs quality checks on your
project's Java source files using
PMD and generates reports from

these checks.

proj ect-report reporting-base - Generates reports containing
useful information about your
Gradle build.

Page 269 of 605

http://codenarc.sourceforge.net/index.html
http://eclipse.org
http://findbugs.sourceforge.net
http://www.jetbrains.com/idea/index.html
http://clarkware.com/software/JDepend.html
http://pmd.sourceforge.net

si gni ng base - Adds the ability to digitally sign
built files and artifacts.

27.6. Incubating software development plugins

These plugins provide help with your software development process.

Table 27.6. Softwar e development plugins

Plugin Id Automatically Works Description

applies with
bui | d- dashboar d reporting-base - Generates build dashboard report.
build-init wrapper - Adds support for initializing a new

Gradle build. Handles converting a
Maven build to a Gradle build.

cunit - - Adds support for running CUnit tests.

j acoco reporting-base java Provides integration with the JaCoCo
code coverage library for Java.

vi sual - st udi o - native Adds integration with Visual Studio.
language
plugins

wWr apper - - Adds a W apper task for generating

Gradle wrapper files.

java-gradl e-plugin java Assists with development of Gradle
plugins by providing standard plugin
build configuration and validation.

27.7. Base plugins

These plugins form the basic building blocks which the other plugins are assembled from. They are
available for you to use in your build files, and are listed here for completeness. However, be aware that
they are not yet considered part of Gradle's public API. As such, these plugins are not documented in the
user guide. Y ou might refer to their APl documentation to learn more about them.

Page 270 of 605

http://cunit.sourceforge.net
http://www.eclemma.org/jacoco/
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.wrapper.Wrapper.html

Table 27.7. Base plugins

Plugin Id Description
base Adds the standard lifecycle tasks and configures reasonable defaults for the archive
tasks:

® addsbuild Conf i gur at i onNane tasks. Those tasks assemble the artifacts
belonging to the specified configuration.

® addsupload Conf i gur at i onNane tasks. Those tasks assemble and upload the
artifacts belonging to the specified configuration.

® configures reasonable default values for all archive tasks (e.g. tasks that inherit
from Abst r act Ar chi veTask). For example, the archive tasks are tasks of
types: Jar, Tar, Zi p. Specifically, dest i nati onDi r, baseNane andver si on
properties of the archive tasks are preconfigured with defaults. Thisis extremely
useful because it drives consistency across projects; the consistency regarding
naming conventions of archives and their location after the build completed.

java-base Adds the source sets concept to the project. Does not add any particular source sets.
groovy-base Adds the Groovy source sets concept to the project.
scala-base Adds the Scala source sets concept to the project.

reporting-base Adds some shared convention properties to the project, relating to report generation.

27.8. Third party plugins

You can find alist of external plugins at the Gradle Plugins site.

Page 271 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://plugins.gradle.org/

28

The Project Report Plugin

The Project report plugin adds some tasks to your project which generate reports containing useful
information about your build. These tasks generate the same content that you get by executing the t asks, depen
, and properti es tasks from the command line (see Section 4.7, “Obtaining information about your
build™). In contrast to the command line reports, the report plugin generates the reports into afile. Thereis

also an aggregating task that depends on all report tasks added by the plugin.

We plan to add much more to the existing reports and create additional onesin future releases of Gradle.

28.1. Usage

To use the Project report plugin, include the following in your build script:

apply plugin: '"project-report'’

28.2. Tasks

The project report plugin defines the following tasks:

Page 272 of 605

Table 28.1. Project report plugin - tasks

Task name Dependson Type Dext

dependencyReport - DependencyReport Task Gene
theg
depe
repo

ht m DependencyReport - Ht M DependencyReport Task Gen

depe
and

depe
insic
repo
theg
ora
proje

pr opertyReport - Pr opert yReport Task Gen
theg

prop
repo

t askReport - TaskReport Task Gene
ther
task

pr oj ect Report dependencyReport , properTg&eport Gene
,taskReport, ht ml DependencyReport al p
repo

28.3. Project layout

The project report plugin does not require any particular project layout.

28.4. Dependency management

The project report plugin does not define any dependency configurations.

28.5. Convention properties

The project report defines the following convention properties:

Page 273 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.DependencyReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.reporting.dependencies.HtmlDependencyReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.PropertyReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.diagnostics.TaskReportTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Task.html

Table 28.2. Project report plugin - convention properties

Property name

reportsDi r Nane

reportsDir

proj ects

proj ect Report Di r Name

proj ect ReportDir

These convention

properties are

Type
String

Fi | e (read-only)

Set <Pr o] ect >

String

Fi | e (read-only)

Pr oj ect Report sPl ugi nConventi on.

provided by a

Default value

reports

Description

The name of
the directory
to generate
reportsinto,
relative to the
build
directory.

bui | dDi r/ report sDi r NameThe directory

A one element set with the
project the plugin was
applied to.

pr oj ect

to generate
reportsinto.

The projects
to generate the
reportsfor.

The name of
the directory
to generate the
project report
into, relative
to the reports
directory.

report sDi r/ proj ect ReporTHia diNataey

convention

object

to generate the
project report
into.

of type

Page 274 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.plugins.ProjectReportsPluginConvention.html

29

The Build Dashboard Plugin

The build dashboard plugin is currently incubating. Please be aware that the DSL and other
configuration may change in later Gradle versions.

The Build Dashboard plugin can be used to generate a single HTML dashboard that provides a single point
of accessto all of the reports generated by a build.

29.1. Usage

To use the Build Dashboard plugin, include the following in your build script:

Example 29.1. Using the Build Dashboard plugin

bui |l d. gradl e
apply plugin: 'buil d-dashboard'

Applying the plugin adds the bui | dDashboar d task to your project. The task aggregates the reports for
all tasks that implement the Repor t i ng interface from all projects in the build. It istypicaly only applied
to the root project.

The bui | dDashboar d task does not depend on any other tasks. It will only aggregate the reporting tasks
that are independently being executed as part of the build run. To generate the build dashboard, simply
include this task in the list of tasks to execute. For example, “gr adl e bui | dDashboard bui | d” will
generate adashboard for al of the reporting tasks that are dependents of the bui | d task.

29.2. Tasks

The Build Dashboard plugin adds the following task to the project:

Page 275 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.reporting.Reporting.html

Table 29.1. Build Dashboard plugin - tasks

Task name Depends Type Description
on
bui | dDashboar d - Gener at eBui | dDashboar d Generates build dashboard
report.

29.3. Project layout

The Build Dashboard plugin does not require any particular project layout.

29.4. Dependency management

The Build Dashboard plugin does not define any dependency configurations.

29.5. Configuration

Y ou can influence the location of build dashboard plugin generation via Repor t i ngExt ensi on.

Page 276 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.reporting.GenerateBuildDashboard.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.reporting.ReportingExtension.html

30

Comparing Builds

Build comparison support is an incubating feature. This means that it is incomplete and not yet at
regular Gradle production quality. This also means that this Gradle User Guide chapter is awork in
progress.

Gradle provides support for comparing the outcomes (e.g. the produced binary archives) of two builds.
There are several reasons why you may want to compare the outcomes of two builds. You may want to
compare:

® A build with anewer version of Gradle than it's currently using (i.e. upgrading the Gradle version).

* A Gradle build with a build executed by another tool such as Apache Ant, Apache Maven or something
else (i.e. migrating to Gradle).

® The same Gradle build, with the same version, before and after a change to the build (i.e. testing build
changes).

By comparing builds in these scenarios you can make an informed decision about the Gradle upgrade,
migration to Gradle or build change by understanding the differences in the outcomes. The comparison
process produces a HTML report outlining which outcomes were found to be identical and identifying the
differences between non-identical outcomes.

30.1. Definition of terms

The following are the terms used for build comparison and their definitions.

“Build”
In the context of build comparison, a build is not necessarily a Gradle build. It can be any invokable
“process’ that produces observable “outcomes’. At least one of the builds in a comparison will be a
Gradle build.

“Build Outcome”
Something that happens in an observable manner during a build, such as the creation of a zip file or test
execution. These are the things that are compared.

“ Sour ce Build”
The build that comparisons are being made against, typically the build in its “current” state. In other
words, the left hand side of the comparison.

Page 277 of 605

“Target Build”
The build that is being compared to the source build, typicaly the “proposed” build. In other words, the
right hand side of the comparison.

“Host Build”
The Gradle build that executes the comparison process. It may be the same project as either the “target”
or “source” build or may be a completely separate project. It does not need to be the same Gradle
version as the “source” or “target” builds. The host build must be run with Gradle 1.2 or newer.

“Compared Build Outcome”
Build outcomes that are intended to be logically equivalent in the “source” and “target” builds, and are
therefore meaningfully comparable.

“Uncompared Build Outcome’
A build outcome is uncompared if alogical equivalent from the other build cannot be found (e.g. a build
produces a zip file that the other build does not).

“Unknown Build Outcome”
A build outcome that cannot be understood by the host build. This can occur when the source or target
build is a newer Gradle version than the host build and that Gradle version exposes new outcome types.
Unknown build outcomes can be compared in so far as they can be identified to be logically equivalent
to an unknown build outcome in the other build, but no meaningful comparison of what the build
outcome actualy is can be performed. Using the latest Gradle version for the host build will avoid
encountering unknown build outcomes.

30.2. Current Capabilities

Asthisisan incubating feature, alimited set of the eventual functionality has been implemented at thistime.

30.2.1. Supported builds

Only support for comparing Gradle builds is available at this time. Both the source and target build must
execute with Gradle newer or equal to version 1. 0. The host build must be at least version 1. 2.

Future versions will provide support for executing builds from other build systems such as Apache Ant or
Apache Maven, as well as support for executing arbitrary processes (e.g. shell script based builds)

30.2.2. Supported build outcomes

Only support for comparing build outcomes that are zi p archivesis supported at thistime. Thisincludesj ar
,war and ear archives,

Future versions will provide support for comparing outcomes such as test execution (i.e. which tests were
executed, which tests failed, etc.)

Page 278 of 605

30.3. Comparing Gradle Builds

The conpar e- gr adl e- bui | ds plugin can be used to facilitate a comparison between two Gradle
builds. The plugin adds a Conpar eGr adl eBui | ds task named “conpar eGr adl eBui | ds” to the
project. The configuration of this task specifies what is to be compared. By default, it is configured to
compare the current build with itself using the current Gradle version by executing thetasks: “cl ean assenbl ¢

apply plugin: 'conpare-gradl e-buil ds’

Thistask can be configured to change what is compared.

conpar eG adl eBui | ds {

sourceBui | d {
projectDir "/projects/project-a"
gradl eVersion "1.1"

}

targetBuil d {
projectDir "/projects/project-b"
gradl eVersion "1.2"

The example above specifies a comparison between two different projects using two different Gradle
versions.

30.3.1. Trying Gradle upgrades

Y ou can use the build comparison functionality to very quickly try anew Gradle version with your build.

To try your current build with a different Gradle version, simply add the following to the bui | d. gr adl e
of the root project.

apply plugin: 'conpare-gradl e-builds'

conpar eG adl eBui | ds {
target Bui | d. gradl eVersi on = "«gradl e versi on»"

}

Then simply execute the compar eGradleBuilds task. You will see the console output of the “source” and
“target” builds as they are executing.

Page 279 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.plugins.buildcomparison.gradle.CompareGradleBuilds.html

30.3.2. The comparison “result”

If there are any differences between the compared outcomes, the task will fail. The location of the HTML
report providing insight into the comparison will be given. If all compared outcomes are found to be
identical, and there are no uncompared outcomes, and there are no unknown build outcomes, the task will
succeed.

Y ou can configure the task to not fail on compared outcome differences by setting thei gnor eFai | ur es
property to true.

conpar eG adl eBui | ds {
i gnoreFailures = true

}

30.3.3. Which archives are compared?

For an archive to be a candidate for comparison, it must be added as an artifact of the archives configuration.
Take alook at Chapter 31, Publishing artifacts for more information on how to configure and add artifacts.

The archive must also have been produced by a Zi p, Jar, War , Ear task. Future versions of Gradle will
support increased flexibility in this area.

Page 280 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.ear.Ear.html

31

Publishing artifacts

This chapter describes the original publishing mechanism available in Gradle 1.0: in Gradle 1.3 a
new mechanism for publishing was introduced. While this new mechanism is incubating and not yet
complete, it introduces some new concepts and features that do (and will) make Gradle publishing
even more powerful.

Y ou can read about the new publishing pluginsin Chapter 34, Ivy Publishing (new) and Chapter 35,
Maven Publishing (new). Please try them out and give us feedback.

31.1. Introduction

This chapter is about how you declare the outgoing artifacts of your project, and how to work with them
(e.g. upload them). We define the artifacts of the projects as the files the project provides to the outside
world. This might be alibrary or a ZIP distribution or any other file. A project can publish as many artifacts
asit wants.

31.2. Artifacts and configurations

Like dependencies, artifacts are grouped by configurations. In fact, a configuration can contain both artifacts
and dependencies at the sametime.

For each configuration in your project, Gradle provides the tasks upl oad Conf i gur ati onNanme and bui | dG
. [19] Execution of these tasks will build or upload the artifacts belonging to the respective configuration.

Table 46.5, “Java plugin - dependency configurations’ shows the configurations added by the Java plugin.
Two of the configurations are relevant for the usage with artifacts. The ar chi ves configuration is the
standard configuration to assign your artifacts to. The Java plugin automatically assigns the default jar to
this configuration. We will talk more about the r unt i me configuration in Section 31.5, “More about
project libraries’. As with dependencies, you can declare as many custom configurations as you like and
assign artifacts to them.

Page 281 of 605

31.3. Declaring artifacts

31.3.1. Archivetask artifacts

Y ou can use an archive task to define an artifact:

Example 31.1. Defining an artifact using an ar chive task
bui |l d. gradl e
task myJar(type: Jar)

artifacts {
archi ves nyJar

}

It is important to note that the custom archives you are creating as part of your build are not automatically
assigned to any configuration. Y ou have to explicitly do this assignment.

31.3.2. File artifacts

Y ou can aso use afile to define an artifact:

Example 31.2. Defining an artifact using afile
bui |l d. gradl e

def soneFile = file(' build/ sonefile.txt")

artifacts {

ar chi ves soneFil e

}

Gradle will figure out the properties of the artifact based on the name of the file. Y ou can customize these
properties:

Example 31.3. Customizing an artifact

bui |l d. gradl e

task nyTask(type: MTaskType) ({
destFile = file(' build/sonmefile.txt")

}

artifacts {

archi ves(nyTask. destFile) {
name 'ny-artifact’
type 'text’
bui I t By myTask

Page 282 of 605

There is a map-based syntax for defining an artifact using a file. The map must include afi | e entry that
definesthe file. The map may include other artifact properties:

Example 31.4. Map syntax for defining an artifact using afile

bui | d. gradl e

task generate(type: MTaskType) {
destFile = file(' build/ sonmefile.txt")

}

artifacts {
archives file: generate.destFile, name: 'ny-artifact', type: 'text', builtB

}

31.4. Publishing artifacts

We have said that there is a specific upload task for each configuration. Before you can do an upload, you
have to configure the upload task and define where to publish the artifacts to. The repositories you have
defined (as described in Section 24.6, “Repositories’) are not automatically used for uploading. In fact,
some of those repositories only allow downloading artifacts, not uploading. Here is an example of how you
can configure the upload task of a configuration:

Example 31.5. Configuration of the upload task
bui |l d. gradl e
repositories {
flatDir {

nane "fil eRepo”
dirs "repo”

}
upl oadAr chi ves {

repositories {
add project.repositories.fil eRepo

ivy {
credentials {
user nane "username"
password " pw'

}

url "http://repo. nyconpany. cont'

As you can see, you can either use a reference to an existing repository or create a new repository. As
described in Section 24.6.9, “More about Ivy resolvers’, you can use al the Ivy resolvers suitable for the
purpose of uploading.

If an upload repository is defined with multiple patterns, Gradle must choose a pattern to use for uploading
each file. By default, Gradle will upload to the pattern defined by the ur | parameter, combined with the

Page 283 of 605

optional | ayout parameter. If nour | parameter is supplied, then Gradle will usethefirst defined arti f act Pe
for uploading, or the first defined i vyPat t er n for uploading Ivy files, if thisis set.

Uploading to a Maven repository is described in Section 32.6, “Interacting with Maven repositories’.

31.5. More about project libraries

If your project is supposed to be used as alibrary, you need to define what are the artifacts of thislibrary and
what are the dependencies of these artifacts. The Java plugin adds a r unt i ne configuration for this
purpose, with the implicit assumption that the r unt i me dependencies are the dependencies of the artifact
you want to publish. Of course thisis fully customizable. Y ou can add your own custom configuration or let
the existing configurations extend from other configurations. Y ou might have a different group of artifacts
which have a different set of dependencies. This mechanism is very powerful and flexible.

If someone wants to use your project as a library, she simply needs to declare which configuration of the
dependency to depend on. A Gradle dependency offers the conf i gur ati on property to declare this. If
thisis not specified, the def aul t configuration is used (see Section 24.4.9, “ Dependency configurations”).
Using your project as a library can either happen from within a multi-project build or by retrieving your
project from arepository. In the latter case, ani vy. xm descriptor in the repository is supposed to contain
al the necessary information. If you work with Maven repositories you don't have the flexibility as
described above. For how to publish to a Maven repository, see the section Section 32.6, “Interacting with
Maven repositories’.

[19] To be exact, the Base plugin provides those tasks. This plugin is automatically applied if you use the
Javaplugin.

Page 284 of 605

32

The Maven Plugin

This chapter isawork in progress

The Maven plugin adds support for deploying artifacts to Maven repositories.

32.1. Usage

To use the Maven plugin, include the following in your build script:

Example 32.1. Using the Maven plugin

bui |l d. gradl e

apply plugin: 'nmaven'

32.2. Tasks

The Maven plugin defines the following tasks:

Table 32.1. Maven plugin - tasks

Task Depends Type Description

name on

install All tasks Upl oad Installsthe associated artifacts to the local Maven cache,
that build including Maven metadata generation. By default the install
the task is associated with the ar chi ves configuration. This
associated configuration has by default only the default jar as an element.
archives. To learn more about installing to the local repository, see:

Section 32.6.3, “Ingtalling to the local repository”

32.3. Dependency management

The Maven plugin does not define any dependency configurations.

Page 285 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.Upload.html

32.4. Convention properties

The Maven plugin defines the following convention properties:

Table 32.2. Maven plugin - properties

Property name Type Default value Descr

mavenPonDi r File ${project.buildD r}/ ponmed
where
gener:
POM<
writte

conf 2ScopeMappi ngs Conf 2ScopeMappi ngCont ai ner n/ a Instrur
for me
Gradl(
confic
toMa
scope
the se
caled
“Depe
mappi

These properties are provided by a MavenPl ugi nConvent i on convention object.

32.5. Convention methods

The maven plugin provides a factory method for creating a POM. Thisis useful if you need a POM without
the context of uploading to a Maven repo.

Page 286 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

Example 32.2. Creating a stand alone pom.
buil d. gradl e

task writeNewPom {
doLast {
pom {
project {
i ncepti onYear ' 2008’
i censes {
license {

nane ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE-2. 0. t xt'
di stribution 'repo’

}

}
}.witeTo("$buil dDi r/ newpom xmi ")

Amongst other things, Gradle supports the same builder syntax as polyglot Maven. To learn more about the
Gradle Maven POM object, see MavenPom See also: MavenPl ugi nConventi on

32.6. Interacting with Maven repositories

32.6.1. Introduction

With Gradle you can deploy to remote Maven repositories or install to your local Maven repository. This
includes all Maven metadata manipulation and works also for Maven snapshots. In fact, Gradle's
deployment is 100 percent Maven compatible as we use the native Maven Ant tasks under the hood.

Deploying to a Maven repository is only half the fun if you don't have a POM. Fortunately Gradle can
generate this POM for you using the dependency information it has.

32.6.2. Deploying to a Maven repository
Let's assume your project produces just the default jar file. Now you want to deploy this jar file to aremote
Maven repository.
Example 32.3. Upload of fileto remote Maven repository
bui | d. gradl e
apply plugin: 'maven'
upl oadAr chi ves {

repositories {
mavenDepl oyer {

repository(url: "file://local host/tnp/ my/Repo/")

Page 287 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.plugins.MavenPluginConvention.html

That is all. Calling the upl oadAr chi ves task will generate the POM and deploys the artifact and the
POM to the specified repository.

There is more work to do if you need support for protocols other than f i | e. In this case the native Maven
code we delegate to needs additional libraries. Which libraries are needed depends on what protocol you
plan to use. The available protocols and the corresponding libraries are listed in Table 32.3, “Protocol jars
for Maven deployment” (those libraries have transitive dependencies which have transitive dependencies). [
201 For example, to use the ssh protocol you can do:

Example 32.4. Upload of file via SSH

buil d. gradl e

configurations {
depl oyer Jars

}

repositories {
mavenCentral ()

}

dependenci es {
depl oyerJars "org. apache. maven. wagon: wagon- ssh: 2. 2"

}

upl oadAr chi ves {
reposi tori es. mavenDepl oyer {
configuration = configurations. depl oyerJars
repository(url: "scp://repos. nyconpany.conirel eases") {
aut henti cati on(user Nanme: "ne", password: "nyPassword")

There are many configuration options for the Maven deployer. The configuration is done via a Groovy
builder. All the elements of this tree are Java beans. To configure the simple attributes you pass a map to the
bean elements. To add bean elements to its parent, you use a closure. In the example above repository and
authentication are such bean elements. Table 32.4, “Configuration elements of the MavenDeployer” lists
the available bean elements and a link to the Javadoc of the corresponding class. In the Javadoc you can see
the possible attributes you can set for a particular element.

In Maven you can define repositories and optionally snapshot repositories. If no snapshot repository is
defined, releases and snapshots are both deployed to the r eposi t or y element. Otherwise snapshots are
deployed to the snapshot Reposi t ory element.

Page 288 of 605

Table 32.3. Protocol jarsfor Maven deployment

Protocol Library
http org.apache.maven.wagon:wagon-http:2.2
ssh org.apache.maven.wagon:wagon-ssh: 2.2

ssh-external org.apache.maven.wagon:wagon-ssh-external :2.2

ftp org.apache.maven.wagon:wagon-ftp:2.2
webdav org.apache.maven.wagon:wagon-webdav:1.0-beta-2
file -

Table 32.4. Configuration elements of the MavenDeployer

Element Javadoc

root MavenDepl oyer

repository org.apache.maven.artifact.ant. RemoteRepository
authentication org.apache.maven.artifact.ant. Authentication
releases org.apache.maven.artifact.ant.RepositoryPolicy
snapshots org.apache.maven.artifact.ant.RepositoryPolicy
proxy org.apache.maven.artifact.ant.Proxy

snapshotRepository org.apache.maven.artifact.ant.RemoteRepository

32.6.3. Installing to the local repository

The Maven plugin addsan i nst al | task to your project. This task depends on all the archives task of the ar chi
configuration. It installs those archives to your local Maven repository. If the default location for the local
repository isredefined inaMavenset ti ngs. xmi , thisis considered by this task.

32.6.4. Maven POM generation

When deploying an artifact to a Maven repository, Gradle automatically generates a POM for it. The gr oupl d
,artifactld,versionandpackagi ng elements used for the POM default to the values shown in the
table below. The dependency elements are created from the project's dependency declarations.

Page 289 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Authentication.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RepositoryPolicy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/Proxy.html
http://www.docjar.com/docs/api/org/apache/maven/artifact/ant/RemoteRepository.html

Table 32.5. Default Valuesfor Maven POM generation

Maven Default Value

Element

groupld project.group

artifactld uploadTask.repositories.mavenDeployer.pom.artifactld (if set) or
archiveTask.baseName.

version project.version

packaging archiveTask.extension

Here, upl oadTask and ar chi veTask refer to the tasks used for uploading and generating the archive,
respectively (for example upl oadAr chi ves andj ar). ar chi veTask. baseNane defaultsto pr oj ect . ar
which in turn defaultsto pr oj ect . nane.

When you set the “ar chi veTask. baseNane” property to a value other than the default, you'll
also have to set upl oadTask. r eposi tori es. mavenDepl oyer. pom artifactld to the
same value. Otherwise, the project at hand may be referenced with the wrong artifact ID from
generated POMs for other projects in the same build.

Generated POMs can be found in <bui | dDi r >/ pons. They can be further customized via the
MavenPom API. For example, you might want the artifact deployed to the Maven repository to have a
different version or name than the artifact generated by Gradle. To customize these you can do:

Example 32.5. Customization of pom
bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ my/Repo/")
pom version = '1. 0Maven'

pomartifactld = ' myMavenNang'

To add additional content to the POM, the pom pr oj ect builder can be used. With this builder, any
element listed in the Maven POM reference can be added.

Page 290 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/MavenPom.html
http://maven.apache.org/pom.html

Example 32.6. Builder style customization of pom
buil d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ my/Repo/")
pom proj ect {
i censes {
license {

nane ' The Apache Software License, Version 2.0
url "http://ww. apache. org/licenses/ LI CENSE-2. 0. t xt'
di stribution 'repo’

Note: groupl d, artifactld, versi on, and packagi ng should always be set directly on the pom
object.

Example 32.7. M odifying auto-generated content

bui |l d. gradl e

def installer = install.repositories. mavenlnstaller
def depl oyer = upl oadArchives. repositories. mavenDepl oyer

[instal | er, depl oyer]*. pont.whenConfigured {pom ->
pom dependenci es. find {dep -> dep.groupld == 'group3' && dep.artifactld =="
}

If you have more than one artifact to publish, things work a little bit differently. See the section called
“Multiple artifacts per project”.

To customize the settings for the Maven installer (see Section 32.6.3, “Installing to the local repository”),
you can do:

Example 32.8. Customization of Maven installer

bui |l d. gradl e

instal |l {
repositories. mavenl nstal | er {
pom version = '1. OMaven'

pomartifactld = ' nyNane'

Page 291 of 605

Multiple artifacts per project

Maven can only deal with one artifact per project. Thisis reflected in the structure of the Maven POM. We
think there are many situations where it makes sense to have more than one artifact per project. In such a
case you need to generate multiple POMs. In such a case you have to explicitly declare each artifact you
want to publish to a Maven repository. The MavenDepl oyer and the Maveninstaller both provide an API
for this:

Example 32.9. Generation of multiple poms
bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
repository(url: "file://local host/tnp/ nyRepo/")
addFilter('api') {artifact, file ->
artifact.nane == ' api

}

addFilter('service') {artifact, file ->
artifact.name == 'service'

}

pon(' api').version = 'nySpeci al MavenVer si on'

Y ou need to declare afilter for each artifact you want to publish. This filter defines a boolean expression for
which Gradle artifact it accepts. Each filter has a POM associated with it which you can configure. To learn
more about this have alook at Ponti | t er Cont ai ner and its associated classes.

Dependency mapping

The Maven plugin configures the default mapping between the Gradle configurations added by the Java and
War plugin and the Maven scopes. Most of the time you don't need to touch this and you can safely skip this
section. The mapping works like the following. You can map a configuration to one and only one scope.
Different configurations can be mapped to one or different scopes. You can also assign a priority to a
particular configuration-to-scope mapping. Have a look at Conf 2ScopeMappi ngCont ai ner to learn
more. To access the mapping configuration you can say:

Example 32.10. Accessing a mapping configuration
bui |l d. gradl e
t ask mappi ngs {

doLast {
println conf2ScopeMappi ngs. nappi ngs

}

Gradle exclude rules are converted to Maven excludes if possible. Such a conversion is possible if in the
Gradle exclude rule the group as well as the module name is specified (as Maven needs both in contrast to

Page 292 of 605

http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/MavenDeployer.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/PomFilterContainer.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/artifacts/maven/Conf2ScopeMappingContainer.html

Ivy). Per-configuration excludes are also included in the Maven POM, if they are convertible.

[20] It is planned for afuture rel ease to provide out-of-the-box support for this

Page 293 of 605

33

The Signing Plugin

The signing plugin adds the ability to digitally sign built files and artifacts. These digital signatures can then
be used to prove who built the artifact the signature is attached to as well as other information such as when
the signature was generated.

The signing plugin currently only provides support for generating OpenPGP signatures (which is the
signature format required for publication to the Maven Central Repository).

33.1. Usage

To use the Signing plugin, include the following in your build script:

Example 33.1. Using the Signing plugin

bui | d. gradl e

apply plugin: 'signing

33.2. Signatory credentials

In order to create OpenPGP signatures, you will need a key pair (instructions on creating a key pair using
the GnuPG tools can be found in the GhuPG HOWTOs). Y ou need to provide the signing plugin with your
key information, which means three things:

® Thepublic key ID (an 8 character hexadecimal string).
* The absolute path to the secret key ring file containing your private key.
® The passphrase used to protect your private key.

These items must be supplied as the values of propertiessi gni ng. keyl d, si gni ng. secr et KeyRi ngFi | €
, and si gni ng. passwor d respectively. Given the personal and private nature of these values, a good
practice is to store them in the user gr adl e. properti es file (described in Section 12.2, “Gradle
properties and system properties’).

si gni ng. keyl d=24875D73

si gni ng. passwor d=secr et
si gni ng. secr et KeyRi ngFi | e=/ User s/ ne/ . gnupg/ secri ng. gpg

Page 294 of 605

https://en.wikipedia.org/wiki/Pretty_Good_Privacy#OpenPGP
http://central.sonatype.org/pages/requirements.html#sign-files-with-gpgpgp
https://www.gnupg.org/
https://www.gnupg.org/documentation/howtos.html

If specifying this information (especially si gni ng. passwor d) in the user gr adl e. properti es file
is not feasible for your environment, you can source the information however you need to and set the project
properties manually.

i nport org.gradl e. plugins. signing. Sign

gradl e. t askG aph. whenReady { taskG aph ->
if (taskG aph.all Tasks.any { it instanceof Sign }) {
/'l Use Java 6's console to read fromthe console (no good for
/1 a Cl environnent)
Consol e consol e = System consol e()
console.printf "\n\nW have to sign sone things in this build." +
"\'n\ nPl ease enter your signing details.\n\n"

def id = consol e.readLi ne("PGP Key 1d: ")
def file = consol e.readLine("PGP Secret Key Ring File (absol ute path)
def password = consol e. readPassword(" PGP Private Key Password: ")

al | projects { ext."signing.keyld" =id }
al | projects { ext."signing.secretKeyR ngFile"

=file }
al | projects { ext."signing. password" = password }

consol e. printf "\nThanks.\n\n"

33.2.1. Using OpenPGP subkeys

OpenPGP supports subkeys, which are like the normal keys, except they're bound to a master key pair. One
feature of OpenPGP subkeys is that they can be revoked independently of the master keys which makes key
management easier. A practical case study of how subkeys can be leveraged in software development can be
read on the Debian wiki.

The signing plugin supports OpenPGP subkeys out of the box. Just specify a subkey ID asthe valueinthe si gni |
property.

33.3. Specifying what to sign

Aswell as configuring how things are to be signed (i.e. the signatory configuration), you must also specify
what is to be signed. The Signing plugin provides a DSL that allows you to specify the tasks and/or
configurations that should be signed.

33.3.1. Signing Configurations

It iscommon to want to sign the artifacts of a configuration. For example, the Java plugin configures ajar to
build and this jar artifact is added to the ar chi ves configuration. Using the Signing DSL, you can specify
that all of the artifacts of this configuration should be signed.

Page 295 of 605

https://wiki.debian.org/Subkeys

Example 33.2. Signing a configuration

bui | d. gradl e

signi ng {

si gn configurations. archives

}

Thiswill create atask (of type Si gn) in your project named “si gnAr chi ves”, that will build any ar chi ves
artifacts (if needed) and then generate signatures for them. The signature files will be placed alongside the
artifacts being signed.

Example 33.3. Signing a configuration output

Output of gr adl e si gnArchi ves

> gradl e signArchives
:conpi | eJava

: processResour ces

1 cl asses

djar

:si gnArchi ves

BUI LD SUCCESSFUL

Total tinme: 1 secs

33.3.2. Signing Tasks

In some cases the artifact that you need to sign may not be part of a configuration. In this case you can
directly sign the task that produces the artifact to sign.

Example 33.4. Signing atask

bui | d. gradl e

task stuffzZip (type: Zip) {
baseNane = "stuff"
from"src/stuff"

}

signi ng {
sign stuffZp

}

This will create atask (of type Si gn) in your project named “si gnSt uf f Zi p”, that will build the input
task's archive (if needed) and then sign it. The signature file will be placed alongside the artifact being
signed.

Page 296 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.signing.Sign.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.signing.Sign.html

Example 33.5. Signing a task output
Output of gr adl e si gnStuffZip
> gradle signStuffZp
cstuffzip
:signStuffzZip
BUI LD SUCCESSFUL

Total time: 1 secs

For atask to be “signable”, it must produce an archive of some type. Tasks that do this are the Tar , Zi p,
Jar , War and Ear tasks.

33.3.3. Conditional Signing

A common usage pattern is to only sign build artifacts under certain conditions. For example, you may not
wish to sign artifacts for non release versions. To achieve this, you can specify that signing is only required
under certain conditions.

Example 33.6. Conditional signing

bui |l d. gradl e

version = '1.0- SNAPSHOT'
ext.i sRel easeVersi on = !version. endsWt h(" SNAPSHOT")

si gni ng {

requi red { isRel easeVersion && gradl e.taskG aph. hasTask("upl oadArchi ves") }
sign configurations. archi ves

In this example, we only want to require signing if we are building a release version and we are going to
publish it. Because we are inspecting the task graph to determine if we are going to be publishing, we must
set the signing.required property to a closure to defer the evaluation. See
Si gni ngExt ensi on. set Requi red(j ava. | ang. Cbj ect) for more information.

33.4. Publishing the signatures

When specifying what is to be signed via the Signing DSL, the resultant signature artifacts are automatically
added to the si gnat ur es and ar chi ves dependency configurations. This means that if you want to

upload your signatures to your distribution repository along with the artifacts you simply execute the upl oadAr ¢
task as normal.

Page 297 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Tar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Zip.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.Jar.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.War.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.ear.Ear.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/plugins/signing/SigningExtension.html#setRequired(java.lang.Object)

33.5. Signing POM files

When deploying signatures for your artifacts to a Maven repository, you will aso want to sign the published
POM file. The signing plugin adds a signing.signPom) (see:

Si gni ngExt ensi on. si gnPon(or g. gradl e. api . artifacts. maven. MavenDepl oynent,
groovy. | ang. C osur e)) method that can be used in the bef or eDepl oynent () block in your
upload task configuration.

Example 33.7. Signing a POM for deployment
bui |l d. gradl e

upl oadAr chi ves {
repositories {
mavenDepl oyer {
bef or eDepl oynent { MavenDepl oynent depl oynent -> signi ng. si gnPon{ deq

When signing is not required and the POM cannot be signed due to insufficient configuration (i.e. no
credentials for signing) then the si gnPon() method will silently do nothing.

Page 298 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.plugins.signing.SigningExtension.html#org.gradle.plugins.signing.SigningExtension:signPom(org.gradle.api.artifacts.maven.MavenDeployment, groovy.lang.Closure)

34

vy Publishing (new)

This chapter describes the new incubating Ivy publishing support provided by the “i vy- publ i sh”
plugin. Eventually this new publishing support will replace publishing viathe Upl oad task.

If you are looking for documentation on the original Ivy publishing support using the Upl oad task
please see Chapter 31, Publishing artifacts.

This chapter describes how to publish build artifacts in the Apache Ivy format, usually to a repository for
consumption by other builds or projects. What is published is one or more artifacts created by the build, and
an lvy module descriptor (normally i vy. xml) that describes the artifacts and the dependencies of the
artifacts, if any.

A published Ivy module can be consumed by Gradle (see Chapter 24, Dependency Management) and other
tools that understand the Ivy format.

34.1. The“i vy- publ i sh” Plugin
The ability to publish in the Ivy format is provided by the“i vy- publ i sh” plugin.

The “publ i shi ng” plugin creates an extension on the project named “publ i shi ng” of type
Publ i shi ngExt ensi on. This extension provides a container of named publications and a container of
named repositories. The “i vy- publ i sh” plugin works with | vyPubl i cati on publications and
I vyArtifact Repository repositories.

Example 34.1. Applying the “ivy-publish” plugin
bui |l d. gradl e

apply plugin: "ivy-publish'

Applyingthe“i vy- publ i sh” plugin does the following:

* Appliesthe“publ i shi ng” plugin
* Establishesaruleto automaticaly create a Gener at el vyDescr i pt or task for each
I vyPubl i cat i on added (see Section 34.2, “Publications”).
® Establishesaruleto automatically create a Publ i shTol vyReposi t ory task for the combination of

Page 299 of 605

http://ant.apache.org/ivy/
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.PublishingExtension.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

each | vyPubl i cat i on added (see Section 34.2, “Publications’), with each
I vyArtifact Repository added (see Section 34.3, “Repositories’).

34.2. Publications

If you are not familiar with project artifacts and configurations, you should read Chapter 31,
Publishing artifacts, which introduces these concepts. This chapter also describes “publishing
artifacts” using a different mechanism than what is described in this chapter. The publishing
functionality described here will eventually supersede that functionality.

Publication objects describe the structure/configuration of a publication to be created. Publications are
published to repositories via tasks, and the configuration of the publication object determines exactly what is
published. AIl of the publications of a project are defined in the
Publ i shi ngExt ensi on. get Publ i cati ons() container. Each publication has a unique name
within the project.

For the “i vy- publ i sh” plugin to have any effect, an | vyPubl i cat i on must be added to the set of
publications. This publication determines which artifacts are actually published as well as the details
included in the associated Ivy module descriptor file. A publication can be configured by adding
components, customizing artifacts, and by modifying the generated module descriptor file directly.

34.2.1. Publishing a Software Component

The simplest way to publish a Gradle project to an Ivy repository is to specify a Sof t war eConponent to
publish. The components presently available for publication are:

Table 34.1. Software Components

Name Provided By Artifacts Dependencies
java JavaPlugin Generated jar file Dependencies from 'runtime' configuration
web War Plugin Generated war file No dependencies

In the following example, artifacts and runtime dependencies are taken from the “java’ component, which is
added by the Java Pl ugi n.

Example 34.2. Publishing a Java moduleto vy
bui |l d. gradl e

publ i cations {
i vyJava(l vyPubl i cation) {

from conponents. java

}

Page 300 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:publications
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/javadoc/org/gradle/api/component/SoftwareComponent.html

34.2.2. Publishing custom artifacts

It is also possible to explicitly configure artifacts to be included in the publication. Artifacts are commonly
supplied asraw files, or asinstances of Abst r act Ar chi veTask (e.g. Jar, Zip).

For each custom artifact, it is possible to specify the nane, ext ensi on, t ype, cl assi fi er and conf
values to use for publication. Note that each artifacts must have a unique name/classifier/extension
combination.

Configure custom artifacts as follows:

Example 34.3. Publishing additional artifact to Ivy
bui |l d. gradl e

task sourceldar(type: Jar) {
from sourceSets. mai n.java
classifier "source"

}
publ i shing {
publ i cations {
i vy(lvyPublication) {

from conponents. j ava

artifact(sourcedar) ({
type "source"
conf "runtine"

Seethe |l vyPubl i cati on classin the APl documentation for more detailed information on how artifacts
can be customized.

34.2.3. Identity values for the published project

The generated vy module descriptor file contains an <i nf 0> element that identifies the module. The
default identity values are derived from the following:

® organi sation-Project.get Goup()
®* nodul e - Proj ect. get Nane()

® revision-Project.getVersion()

® status-Project.getStatus()

® pranch - (not set)

Overriding the default identity valuesis easy: simply specify the or gani sat i on, nodul e orr evi si on
attributes when configuring the | vyPubl i cat i on. The st at us and br anch attributes can be set via
the descri pt or property (see | vyModul eDescri pt or Spec). The descri pt or property can aso
be used to add additional custom elements as children of the <i nf 0> element.

Page 301 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:group
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:version
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.Project.html#org.gradle.api.Project:status
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html

Example 34.4. customizing the publication identity

bui | d. gradl e

publ i shing {
publications {
i vy(lvyPublication) {
organi sation 'org.gradl e. sanpl e’
nmodul e ' proj ect 1- sanpl €'
revision '1.1'
descriptor.status = 'ni | estone'

descriptor.branch = 'testing'
descriptor.extralnfo 'http://nmy. nanespace', 'nyEl enment', 'Sonme val ud

from conmponent s. j ava

Gradle will handle any valid Unicode character for organisation,
module and revision (as well as artifact name, extension and
classifier). The only values that are explicitly prohibited are'\ ', '/

Certain repositories are not able
to handle al supported
characters. For example, the "'
character cannot be used as an
identifier when publishing to a
34.2.4. Modifying the generated module filesystem-backed repository on
descriptor Windows.

"and any 1SO control character. The supplied values are
validated early during publication.

At times, the module descriptor file generated from the project
information will need to be tweaked before publishing. The “i vy- publ i sh” plugin provides a hook to
allow such modification.

Example 34.5. Customizing the module descriptor file
bui | d. gradl e
publications {
i vyCust om(| vyPubl i cati on) {

descriptor.w thXxm {
asNode() . i nfo[0] . appendNode(' descri ption',

" A denponstration of ivy descriptor custd

In this example we are simply adding a 'description’ element to the generated Ivy dependency descriptor, but
this hook allows you to modify any aspect of the generated descriptor. For example, you could replace the
version range for a dependency with the actual version used to produce the build.

See | vyModul eDescri pt or Spec. wi t hXm (org. gradl e.api.Action) in the AP
documentation for more information.

It is possible to modify virtually any aspect of the created descriptor should you need to. This means that it
is also possible to modify the descriptor in such away that it is no longer a valid vy module descriptor, so

Page 302 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

care must be taken when using this feature.

The identifier (organisation, module, revision) of the published module is an exception; these values cannot
be modified in the descriptor using the “withXML" hook.

34.2.5. Publishing multiple modules

Sometimes it's useful to publish multiple modules from your Gradle build, without creating a separate
Gradle subproject. An example is publishing a separate APl and implementation jar for your library. With
Gradle thisissimple:

Example 34.6. Publishing multiple modules from a single project
bui |l d. gradl e

task api Jar(type: Jar) {
baseNane "publ i shing-api"
from sour ceSet s. nai n. out put
exclude " **/inpl/**'

}

publ i shing {
publications {

i mpl (1 vyPublication) {
organi sation 'org.gradle.sanple.inpl’
nmodul e ' proj ect2-i npl"'
revision '2.3

from conmponents. j ava

}

api (I vyPublication) {
organi sation 'org.gradl e. sanpl e’
nmodul e ' proj ect 2- api
revision '2'

If a project defines multiple publications then Gradle will publish each of these to the defined repositories.
Each publication must be given a unique identity as described above.

34.3. Repositories

Publications are published to repositories. The repositories to publish to are defined by the
Publ i shi ngExt ensi on. get Reposi tori es() container.

Page 303 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.PublishingExtension.html#org.gradle.api.publish.PublishingExtension:repositories

Example 34.7. Declaring repositoriesto publish to

bui | d. gradl e

repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo

url "$buil dDir/repo”

The DSL used to declare repositories for publishing is the same DSL that is used to declare repositories for
dependencies (Reposi t or yHandl er). However, in the context of Ivy publication only the repositories
created by thei vy () methods can be used as publication destinations. Y ou cannot publishan | vyPubl i cati o
to aMaven repository for example.

34.4. Performing a publish

The “i vy- publ i sh” plugin automatically creates a Publ i shTol vyReposi tory task for each
I vyPubl i cationandl vyArtifact Repository combinationinthe publ i shi ng. publi cati ons
and publ i shi ng. reposi t ori es containers respectively.

The created task is named “publ i sh« PUBNAME»Publ i cati onTo« REPONAME»Repository”,
whichis“publ i shl vyJavaPubl i cati onTol vyReposi t ory” for thisexample. Thistask is of type
Publ i shTol vyRepository.

Page 304 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 34.8. Choosing a particular publication to publish

bui | d. gradl e

apply plugin: 'java
apply plugin: "ivy-publish

group = 'org.gradle.sanpl e’
version = '1.0

publ i shing {
publ i cations {
i vyJava(l vyPublication) {
from conponents. j ava
}
}
repositories {
ivy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "$buil dDir/repo”

Output of gr adl e publ i shl vyJavaPubl i cati onTol vyRepository

> gradl e publishlvyJavaPublicationTol vyRepository
s gener at eDescri ptorFi | eForlvyJavaPublication
:conpi | eJava UP- TO DATE

: processResour ces UP- TO- DATE

:cl asses UP- TO DATE

tjar

: publ i shl vyJavaPubl i cati onTol vyReposi tory

BU LD SUCCESSFUL

Total tinme: 1 secs

34.4.1. The“publ i sh” lifecycle task

The“publ i sh” plugin (that the “i vy- publ i sh” plugin implicitly applies) adds a lifecycle task that can
be used to publish al publicationsto al applicable repositories named “publ i sh”.

In more concrete terms, executing this task will execute all Publ i shTol vyReposi t ory tasks in the
project. Thisisusually the most convenient way to perform a publish.

Page 305 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 34.9. Publishing all publicationsviathe“publish” lifecycle task
Output of gr adl e publ i sh

> gradl e publish

1 gener at eDescri ptor Fi | eFor |l vyJavaPubl i cation
:conpi | eJava UP- TO- DATE

: processResources UP- TO DATE

:cl asses UP-TO DATE

vjar

: publ i shl vyJavaPubl i cati onTol vyRepository

s publish

BUI LD SUCCESSFUL

Total tinme: 1 secs

34.5. Generating the Ivy module descriptor file
without publishing
At timesit is useful to generate the vy module descriptor file (normally i vy. xm) without publishing your

module to an Ivy repository. Since descriptor file generation is performed by a separate task, this is very
easy to do.

The “i vy- publ i sh” plugin creates one Gener at el vyDescri pt or task for each registered

| vyPubl i cati on, named “gener at eDescri pt or Fi | eFor « PUBNAME»Publ i cati on”, which

will be“gener at eDescri pt or Fi | eFor | vyJavaPubl i cati on” for the previous example of the“i vyJe
” publication.

Y ou can specify where the generated Ivy file will be located by setting the dest i nat i on property on the
generated task. By default thisfileiswrittento “bui | d/ publ i cat i ons/ « PUBNAME»/ i vy. xm ”.

Example 34.10. Generating the Ivy module descriptor file

bui |l d. gradl e

nodel {
t asks. gener at eDescri pt or Fi | eFor | vyCust onPubl i cati on {
destination = file("$buil dDir/generated-ivy.xm")

}

Output of gr adl e gener at eDescri ptorFi |l eFor | vyCust onPubl i cati on

> gradl e generateDescriptorFil eForlvyCustonPublication
:gener at eDescriptorFi | eForl vyCust onPubl i cation

BUI LD SUCCESSFUL

Total tinme: 1 secs

Page 306 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.GenerateIvyDescriptor.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.IvyPublication.html

The“i vy- publ i sh” plugin leverages some experimental support for late plugin configuration, and
the Gener at el vyDescri pt or task will not be constructed until the publishing extension is
configured. The simplest way to ensure that the publishing plugin is configured when you attempt to
access the Gener at el vyDescri pt or task is to place the access inside a model block, as the
exampl e above demonstrates.

The same applies to any attempt to access publication-specific tasks like
Publ i shTol vyReposi t ory. These tasks should be referenced from within anodel block.

34.6. Complete example

The following example demonstrates publishing with a multi-project build. Each project publishes a Java
component and a configured additional source artifact. The descriptor file is customized to include the
project description for each project.

Page 307 of 605

http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html
http://www.gradle.org/docs/3.2.1/dsl/org.gradle.api.publish.ivy.tasks.PublishToIvyRepository.html

Example 34.11. Publishing a Java module
buil d. gradl e

subproj ects {
apply plugin: 'java
apply plugin: "ivy-publish'

version = '1. 0
group = 'org.gradle.sanpl e’

repositories {
mavenCentral ()

}

task sourceldar(type: Jar) {
from sourceSets. mai n.java
classifier "source"

}

project (":projectl") {
description = "The first project”

dependenci es {
conpile "junit:junit:4.12', project(':project2')
}
}

project (":project2") {
description = "The second project"

dependenci es {
conpi |l e ' commons-col | ecti ons: commons-col | ections: 3.2.2
}
}

subproj ects {
publ i shing {
repositories {
vy {
/'l change to point to your repo, e.g. http://ny.org/repo
url "${rootProject.buildDir}/repo"
}
}

publications {
i vy(lvyPublication) {

from conmponents. j ava

artifact(sourcedar) {
type "source"
conf "runtine"

}

descriptor.w thXm {
asNode().info[0] . appendNode(' description', description)

}

Theresult isthat